• 제목/요약/키워드: Single-phase grid-connected inverter

검색결과 111건 처리시간 0.022초

단상 계통연계형 인버터의 SRF-PLL 옵셋 오차로 인한 전류 맥동 저감에 관한 연구 (A Study on Current Ripple Reduction Due to Offset Error in SRF-PLL for Single-phase Grid-connected Inverters)

  • 황선환;황영기;권순걸
    • 조명전기설비학회논문지
    • /
    • 제28권11호
    • /
    • pp.68-76
    • /
    • 2014
  • This paper presents an offset error compensation algorithm for the accurate phase angle of the grid voltage in single-phase grid-connected inverters. The offset error generated from the grid voltage measurement process cause the fundamental harmonic component with grid frequency in the synchronous reference frame phase lock loop (PLL). As a result, the grid angle is distorted and the power quality in power systems is degraded. In addition, the dq-axis currents in the synchronous reference frame and phase current have the dc component, first and second order ripples compared with the grid frequency under the distorted grid angle. In this paper, the effects of the offset and scaling errors are analyzed based on the synchronous reference frame PLL. Particularly, the offset error can be estimated from the integrator output of the synchronous reference frame PLL and compensated by using proportional-integral controller. Moreover, the RMS (Root Mean Square) function is proposed to detect the offset error component. The effectiveness of the proposed algorithm is verified through simulation and experiment results.

Control Strategy Design of Grid-Connected and Stand-Alone Single-Phase Inverter for Distributed Generation

  • Cai, Fenghuang;Lu, Dexiang;Lin, Qiongbin;Wang, Wu
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1813-1820
    • /
    • 2016
  • Dual-mode photovoltaic power system should be capable of operating in grid-connected (GC) and stand-alone (SA) modes for distributed generation. Under different working modes, the optimal parameters of inverter output filters vary. Inverters commonly operate in GC mode, and thus, a small capacitance is beneficial to the GC topology for achieving a reasonable compromise. A predictive current control scheme is proposed to control the grid current in GC mode and thereby obtain high-performance power. As filter are not optimal under SA mode, a compound control strategy consisting of predictive current control, instantaneous voltage control, and repetitive control is proposed to achieve low total harmonic distortion and improve the output voltage spectrum. The seamless transfer between GC mode and SA mode is illustrated in detail. Finally, the simulation and experimental results of a 4 kVA prototype demonstrate the effectiveness of the proposed control strategy.

Seamless Transfer of Single-Phase Utility Interactive Inverters with a Synchronized Output Regulation Strategy

  • Xiang, Ji;Ji, Feifan;Nian, Heng;Zhang, Junming;Deng, Hongqiao
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1821-1832
    • /
    • 2016
  • This study presents a strategy using the synchronized output regulation method (SOR) for controlling inverters operating in stand-alone and grid-connected modes. From the view point of networked dynamic systems, SOR involves nodes with outputs that are synchronized but also display a desirable wave shape. Under the SOR strategy, the inverter and grid are treated as two nodes that comprise a simple network. These two nodes work independently under the stand-alone mode. An intermediate mode, here is named the synchronization mode, is emphasized because the transition from the stand-alone mode to the grid-connected mode can be dealt as a standard SOR problem. In the grid-connected mode, the inverter operates in an independent way, in which the voltage reference changes for generalized synchronization where its output current satisfies the required power injection. Such a relatively independent design leads to a seamless transfer between operation modes. The closed-loop system is analyzed in the state space on the basis of the output regulation theory, which improves the robustness of the design. Simulations and experiments are performed to verify the proposed control strategy.

Grid-friendly Characteristics Analysis and Implementation of a Single-phase Voltage-controlled Inverter

  • Zhang, Shuaitao;Zhao, Jinbin;Chen, Yang;He, Chaojie
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1278-1287
    • /
    • 2017
  • Inverters are widely used in distributed power generation and other applications. However, their lack of inertia and variable impedance may cause system instability and power transfer inaccuracy. This paper proposes a control scheme for a single phase voltage-controlled inverter with some grid-friendly characteristics. The proposed control algorithm enables the inverter to function as a voltage source with an inner output impedance in both the islanded and grid-connected modes. Virtual inertia and rotor equations are embedded in the PLL part. Thus, the frequency stability can remain. The inner output impedance can be adjusted freely, which helps to accurately decouple and transmit the output active and reactive power. The proposed inverter operates like a traditional synchronous generator. Simulations and experiments are designed and carried out to verify the proposed control strategy.

Single-Phase Transformerless PV Power Conditioning Systems with Low Leakage Current and Active Power Decoupling Capability

  • Nguyen, Hoang Vu;Park, Do-Hyeon;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.997-1006
    • /
    • 2018
  • This paper proposes a transformerless photovoltaic (PV) power converter system based on the DC/AC boost inverter, which can solve the leakage current and second-order ripple power issues in single-phase grid-connected PV inverters. In the proposed topology, the leakage current can be decreased remarkably since most of the common-mode currents flow through the output capacitor, by-passing parasitic capacitors, and grounding resistors. In addition, the inherent ripple power component in the single-phase grid inverter can be suppressed without adding any extra components. Therefore, bulky electrolytic capacitors can be replaced by small film capacitors. The effectiveness of the proposed topology has been verified by simulation and experimental results for a 1-kW PV PCS.

계통 연계형 태양광 발전 인버터의 디지털 제어 (Digital Control of Utility-Connected PV Inverter)

  • 김용균;최종우;김흥근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1161-1165
    • /
    • 2004
  • The fundamental digital control of utility-connected PV inverter are presented with detailed analysis and simulation and experimental results. PLL controller using virtual two phase detector, current controller of DC-DC converter, dc link voltage controller and inverter current controller are discussed. The novel PLL controller using virtual two phase detector can detect the information of utility voltage instantaneously and is not sensitive to the noise. Current controller of DC-DC converter, dc link voltage controller and inverter current controller are the conventional methods. We have constructed utility-Connected PV Inverter and applied to those controllers. The simulation and experimental results demonstrate an excellent performance in the single-phase grid-connected operation.

  • PDF

디커플링과 에너지 저장 기능을 갖는 계통 연계형 PV-AC Module용 플라이백 인버터 (Grid-connected PV-AC module with Decoupling and Energy Storage Functions using Flyback Inverter)

  • 류무영;오민석;노용수;정용채;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.475-476
    • /
    • 2013
  • In single-phase flyback inverter for grid-connected PV-AC module, power ripple is occurred as two times grid frequency on input capacitor. So, decoupling method has attracted interest recently. Also, power generation of PV depending on irradiation is limited at particular time, so use of energy storage system can increase energy efficiency. In this paper, flyback inverter for grid-connected PV-AC module which can operate decoupling and energy storage functions is proposed and verified by PSIM simulation.

  • PDF

PLL 알고리즘을 사용한 단상 및 3상 계통연계형 인버터의 동기화 기법 (Synchronization Techniques for Single-Phase and Three-Phase Grid Connected Inverters using PLL Algorithm)

  • 전태원;이홍희;김흥근;노의철
    • 전력전자학회논문지
    • /
    • 제16권4호
    • /
    • pp.309-316
    • /
    • 2011
  • 태양광 발전시스템 등에서 전력을 공급하기 위한 계통연계 인버터에서 계통전압의 동기화를 위하여 PLL시스템이 많이 사용되어 왔다. 본 논문은 단상 및 3상 계통연계 인버터의 동기화 성능을 향상시키기 위하여 루프필터 및 PI 제어기가 없는 PLL 알고리즘을 제시한다. 단상 또는 3상 계통전압으로 유도한 2상 전압을 사용하여 위상 검출기 출력이 직류성분만 있으면서 동기화되었을 때 0이 되도록 궤환신호를 결정한다. 소신호 해석방법으로 비례제어기를 사용한 PLL시스템을 모델링하여 안정도 및 정상상태 오차를 관찰한다. 시뮬레이션 및 실험결과를 통하여 제시한 PLL알고리즘의 타당성을 확인한다.

Voltage Distortion Approach for Output Filter Design for Off-Grid and Grid-Connected PWM Inverters

  • Husev, Oleksandr;Chub, Andrii;Romero-Cadaval, Enrique;Roncero-Clemente, Carlos;Vinnikov, Dmitri
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.278-287
    • /
    • 2015
  • This paper proposes a novel voltage distortion approach for output filter design based on the voltage transfer function for both off-grid and grid-connected Pulse Width Modulation (PWM) Inverters. The method explained in detail is compared to conventional methods. A comparative analysis is performed on an example of L and LCL-filter design. Simulation and experimental results for the off-grid and the grid-connected single phase inverter prove our theoretical predictions. It was found that conventional methods define redundant values of the output filter elements. Assumptions and limitations of the proposed approach are also discussed.

Transformer-Less Single-Phase Four-Level Inverter for PV System Applications

  • Yousofi-Darmian, Saeed;Barakati, Seyed Masoud
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1233-1242
    • /
    • 2014
  • A new inverter topology for single-phase photovoltaic (PV) systems is proposed in this study. The proposed inverter offers a four-level voltage in its output terminals. This feature results in easier filtering in comparison with other conventional two-level or three-level inverters. In addition, the proposed four-level inverter (PFLI) has a transformer-less topology, which decreases the size, weight, and cost of the entire system and increases the overall efficiency of the system. Although the inverter is transformer-less, it produces a negligible leakage ground current (LGC), which makes this inverter suitable for PV grid-connected applications. The performance of the proposed inverter is compared with that of a four-level neutral point clamped inverter (FLNPCI). Theoretical analysis and computer simulations verify that the PFLI topology is superior to FLNPCI in terms of efficiency and suitability for use in PV transformer-less systems.