• Title/Summary/Keyword: Single-phase flow

Search Result 476, Processing Time 0.026 seconds

Single and Two-Phase Flow Pressure Drop for CANFLEX Bundle

  • Park, Joo-Hwan;Jun, Ji-Sun;Suk, Ho-Chun;Dimmick, G.R.;Bullock, D.E.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.532-537
    • /
    • 1998
  • Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-l34a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLRX bundle is found to be about 20 % higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within ${\pm}\;5\;%$ error.

  • PDF

DESIGN AND APPLICATION OF A SINGLE-BEAM GAMMA DENSITOMETER FOR VOID FRACTION MEASUREMENT IN A SMALL DIAMETER STAINLESS STEEL PIPE IN A CRITICAL FLOW CONDITION

  • Park, Hyun-Sik;Chung, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.349-358
    • /
    • 2007
  • A single-beam gamma densitometer is utilized to measure the average void fraction in a small diameter stainless steel pipe under critical flow conditions. A typical design of a single-beam gamma densitometer is composed of a sealed gammaray source, a collimator, a scintillation detector, and a data acquisition system that includes an amplifier and a single channel analyzer. It is operated in the count mode and can be calibrated with a test pipe and various types of phantoms made of polyethylene. A good average void fraction is obtained for a small diameter pipe with various flow regimes of the core, annular, stratified, and bubbly flows. Several factors influencing the performance of the gamma densitometer are examined, including the distance between the source and the detector, the measuring time, and the ambient temperature. The void fraction is measured during an adiabatic downward two-phase critical flow in a vertical pipe. The test pipe has an inner diameter of 10.9 mm and a thickness of 3.2 mm. The average void fraction was reasonably measured for a two-phase critical flow in the presence of nitrogen gas.

Flow Measurement in Bubbly and Slug Flow Regimes Using The Electromagnetic Flowmeter Developed (전자기유량계를 이용한 기포 및 슬러그 유동 측정방법 연구)

  • Cha, Jae-Eun;Ahn, Yeh-Chan;Seo, Kyung-Woo;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1559-1569
    • /
    • 2002
  • In order to investigate the characteristics of electromagnetic flowmeter in two -phase flow, an AC electromagnetic flowmeter was designed and manufactured. In various flow conditions, the signals and noises from the flowmeter were obtained and analyzed by comparison with the observed flow patterns with a high speed CCD camera. The experiment with the void simulators in which rod shaped non-conducting material was used was carried out to investigate the effect of the bubble position and the void fraction on the flowmeter. Based on the results from the void simulator, two -phase flow experiments encompassed from bubbly to slug flow regime were conducted. The simple relation $\Delta$ $U_{TP}$ = $\Delta$ $U_{SP}$ (l-$\alpha$) was verified with measurements of the potential difference and the void fraction. Due to the lack of homogeneity in a rent two -phase flow, the discrepancy between the relation and the present measurement was slightly increased with void fraction and also liquid volumetric flux jf. Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single -phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of a slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes.ul for identifying the flow regimes.

CFD Investigation of Rocket Nozzle Plume for Flame Deflector Preliminary Analysis (화염유도로 예비 해석을 위한 로켓노즐 플룸의 CFD 해석 검증)

  • Jun, Doo-Sung;Kim, Jae-Woo;Kim, Jong-Rok;Kim, Woo-Kyeom;Kim, Seung-Cheol;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.313-316
    • /
    • 2011
  • This paper investigates CFD investigation on single phase supersonic nozzle flow and 2-phase subson ic flow prior to rocket nozzle supersonic 2-phase flow with water injection within the flame deflector. Numerical results of supersonic nozzle single phase flow showed no notable unrealistic behavior as it captures the usual shock cell structures. Three-dimensional 2-phase flow analysis has also been performed to verify whether the approach can grab the droplet behavior during cooling by water injection. It is expected these basic studies will enhance the cooling problem analysis of supersonic 2-phase rocket plume in the future.

  • PDF

Development of an Average Bi-directional Flow Tube for the Measurement of Single and Two phase Flow Rate (단상 및 이상유동 유량 계측을 위한 평균 양방향 유동 튜브 개발)

  • Yun, Byong-Jo;Kang, Kyong-Ho;Euh, Dong-Jin;Baek, Won-Pil
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.172-179
    • /
    • 2004
  • Average Bi-directional flow tube was suggested to measure single and two phase flow rate. Its working principle is similar with Pilot tube, however, it makes it possible to eliminate the cooling system which is normally needed to prevent from flashing in the pressure impulse line of Pilot tube when it is used in the depressurization condition. The suggested instrumentation was tested in the air-water vertical test section which has 80mm inner diameter and 10m length. The flow tube was installed at 120 of L/D from inlet of test section. From the test, single air and water flow rate was measured successfully. For the emasurement of two phase flow rate, Chexal drift-flux correlation was used. In the test a new correlation of momentum exchange factor was suggested. The test result shows that the suggested instrumentation using the measured void fraction and Chexal drift-flux correlation can predict the mass flow rates within $10\%$ error of measured data.

  • PDF

Simple Image-Separation Method for Measuring Two-Phase Flow of Freely Rising Single Bubble (상승하는 단일 버블 이상유동의 PIV 계측을 위한 영상분리기법)

  • Park Sang-min;Jin Song-wan;Kim Won-tae;Sung Jae-yong;Yoo Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.7-10
    • /
    • 2002
  • A novel two-phase PIV algorithm using a single camera has been proposed, which introduces a method of image-separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background each have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent material. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. Moreover, in order to increase the SNR (signal-to-noise ratio) of the cross-correlation of tracer particle image, image enhancement is employed.

  • PDF

Numerical Analysis for Two-Dimensional Compressible and Two-Phase Flow Fields of Air-Water in Eulerian Grid Framework (2차원 압축공기-물의 압축성 이상 유동 수치 해석)

  • Park, Chan-Wook;Lee, Sung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.429-445
    • /
    • 2008
  • Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of each phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe‘s approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated.

Experimentation and Modeling of R32/125/134a Flow Through Short Tube Orifices (R32/125/134a를 사용한 오리피스 팽창장치의 성능실험 및 모델링)

  • 김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.45-54
    • /
    • 1996
  • An experimental investigation on the two-phase flow through tube orifices was performed with the refrigerant mixture of R32/125/134a(30/10/60). A series of tests were conducted to generate wide range of data at varying operation conditions with four short tubes. The tests include both single and two-phase flow conditions at the inlet of the short tube with different oil concentrations. Experimental data were presented as a function of major operating parameters and short tube diameter. Based on test results and data analysis, a semi-empirical flow model was developed to predict the mass flow rate through short tube orifices with a given set of conditions. The flow model was formed to cover both single and two-phase flow at the inlet of short tube with considering the effects of oil concentration.

  • PDF

Experimental Studies on Single Phase Flow and Heat Transfer in Microchannels (미세유로의 단상 유동 및 열전달에 대한 실험적 연구)

  • Kim, Byong-Joo;Kim, Geon-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.795-801
    • /
    • 2008
  • An experimental study has been performed on the single phase flow and convective heat transfer in trapezoidal microchannels. The microchannel was about $270{\mu}m$ wide, $800{\mu}m$ deep. and 7 mm long, which might ensure hydrodynamically fully-developed laminar flow at a low Reynolds number. The experiments were conducted with R1l3 and water, with the Reynolds number ranging from approximately 30 to 5000 for friction factor and 30 to 700 for the Nusselt number. Friction factors in laminar are found to be in good agreement with the predictions of existing correlation suggesting that a conventional analysis approach can be employed in predicting flow friction behavior in microchannels. However turbulent friction factors are hardly predictable by the existing correlations. The experimental results show that the Nusselt number is not a constant but increases almost linearly with the Reynolds number even the flow is fully developed (Re < 100). The dependence of the Nusslet number on the Reynolds number is contradictory to the conventional theory. At a Reynolds number greater than 100, the Nusselt number increases slowly with the Reynolds number, where thennally developing flow is responsible for the increase of the Nusselt number with the Reynolds number.

Heat transfer coefficients for single-Phase flow in a micro-fin tube (마이크로휜 관내의 단상유동 열전달계수)

  • 권정태;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.423-430
    • /
    • 1998
  • Single phase heat transfer coefficients were measured for turbulent water flow in a micro-fin tube by using Wilson plot technique. An experiment for counterflow heat exchange between the micro-fin tube and its outer annulus passage was performed. The annulus side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a micro-fin tube were obtained by Wilson plot technique. Nusselt numbers based on the real heat transfer area and the nominal area were about 35% and 50% larger than those for smooth tube respectively Also, single-phase heat transfer correlations based on real heat transfer area and nominal area have been proposed for a micro-fin tube.

  • PDF