• Title/Summary/Keyword: Single-drop microextraction

Search Result 4, Processing Time 0.017 seconds

Single Drop Microextraction for Analysis of Mustard Gas(HD) (수포작용제(HD) 분석을 위한 단일방울 미세농축법 연구)

  • Park, Yang-Ki;Kim, Sung-Ki;Son, Byung-Hoon;Park, Myeong-Ju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.95-100
    • /
    • 2008
  • A fast, simple, inexpensive, and reproducible sample preparation for extraction and analysis of HD in water was studied using single-drop microextraction(SDME) and GC-MS. Operation parameters, such as extraction solvent, extraction time were optimized. The optimized conditions were $1\{mu}L$ trichloroethylene and 10 min extraction time. In these conditions, about 42 times higher enrichment factor(EF) was obtained. The detection limit of HD was $1\{mu}g/L$, and the precision expressed as relative standard deviation was about 9.0%.

Analysis of Chemical Warfare Agents in Water Using Single-Drop Microextraction

  • Park, Yang-Gi;Kim, Sung-Ki;Choi, Ki-Hwan;Son, Byung-Hoon;Park, Ju-Sub;Kang, Hong-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.49-52
    • /
    • 2009
  • Single-drop microextraction (SDME) is an extraction methodology where the drop plays an essential role as extracts. It was evaluated for the GC-MS determination of nerve agents, one class of the chemical warfare agents (CWAs). Since these nerve agents are highly toxic, it is important to detect the nerve agents in the environmental samples. Several affecting factors including extraction solvents, stirring rate, extraction time, and amounts of salt were optimized. The limit of detections (LODs) were 0.1 - 10 ng/mL and the relative standard deviations (RSDs%, n=5) were in the range of 6.3% to 9.0% for four nerve agents. Without pretreatment of the environmental samples, 5-103 fold enrichments and 48-100% recovery were accomplished. These results demonstrated the feasibility of this method for on-site and off-site analysis of water sample collected from suspicious CWAs site.

Headspace Hanging Drop Liquid Phase Microextraction and GC-MS for the Determination of Linalool from Evening Primrose Flowers

  • Kim, Nam-Sun;Jung, Mi-Jin;Yoo, Zoo-Won;Lee, Sun-Neo;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1996-2000
    • /
    • 2005
  • Headspace hanging drop liquid phase micro-extraction (HS-HD-LPME) is studied as a novel solvent-based sample pretreatment method for floral volatile aroma compounds. This paper reports on application of the HSHD- LPME combined with GC-MS for the analysis of linalool component emitted from evening primrose flowers. The effect of several variables on the method performance was investigated. Additionally, the separation of enantiomers on a cyclodextrin capillary column was performed to identify chirality of (−)-linalool component. Since the unsurpassed volume of a few micro-liters of solvent is used, there is minimal waste or exposure to toxic organic solvents. This method enables to combine extraction, enrichment, clean-up, and sample introduction into a single step prior to the chromatographic process.

Simple and Direct Quantitative Analysis for Quinidine Drug in Fish Tissues

  • Chen, Yuan-Chin;Abdelhamid, Hani Nasser;Wu, Hui-Fen
    • Mass Spectrometry Letters
    • /
    • v.8 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • Analysis of quinidine for fish tissues using single drop microextraction (SDME) coupled with atmospheric pressure matrix assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) are reported. Optimization conditions; such as extraction solvent, extraction time, pH of the aqueous solution, salt additions (NaCl), stirring rate, matrix type and concentration are investigated. Linear dynamic range (${\mu}M$), limit of detection, relative recovery%, and enrichment factor are 0.08-9.2, 0.05, $94.8{\pm}3.1-98.5{\pm}3.3%$, $4.34{\pm}0.28-4.40{\pm}0.30$, respectively. SDME-AP-MALDI-MS shows good intraday and interday reproducibility.