• Title/Summary/Keyword: Single-Loop Single-Vector

Search Result 20, Processing Time 0.022 seconds

Reliability-Based Topology Optimization Using Single-Loop Single-Vector Approach (단일루프 단일벡터 방법을 이용한 신뢰성기반 위상최적설계)

  • Bang Seung-Hyun;Min Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.889-896
    • /
    • 2006
  • The concept of reliability has been applied to the topology optimization based on a reliability index approach or a performance measure approach. Since these approaches, called double-loop single vector approach, require the nested optimization problem to obtain the most probable point in the probabilistic design domain, the time for the entire process makes the practical use infeasible. In this work, new reliability-based topology optimization method is proposed by utilizing single-loop single-vector approach, which approximates searching the most probable point analytically, to reduce the time cost. The results of design examples show that the proposed method provides efficiency curtailing the time for the optimization process and accuracy satisfying the specified reliability.

Modified Single Loop Single Vector Method for Stability and Efficiency Improvement in Reliability-Based Design Optimization (신뢰성기반 최적설계에서 수치적 안정성과 효율성의 개선을 위해 수정된 Single Loop Single Vector 방법)

  • Kim, Bong-Jae;Lee, Jae-Ohk;Yang, Young-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.51-59
    • /
    • 2005
  • SLSV (single loop single vector) method is to solve the excessive computational cost problem in RBDO (reliability-based design optimization) by decoupling the nested iteration loops. However, the practical use of SLSV method to RBDO case is limited by the instability or inaccuracy of the method since it often diverges or converges to a wrong solution. Thus, in this paper, a new modified SLSV method is proposed. This method improves its convergence capability effectively by utilizing Inactive Design and Active MPP Design together with modified HMV (hybrid mean value) method. The usefulness of the proposed method is also verified through numerical examples.

Reliability-Based Shape Optimization Under the Displacement Constraints (변위 제한 조건하에서의 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.589-595
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the evolutionary structural optimization (ESO). An actual design involves uncertain conditions such as material property, operational load, poisson's ratio and dimensional variation. The deterministic optimization (DO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBSO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraint is satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability-based shape design optimization method is proposed by utilization the reliability index approach (RIA), performance measure approach (PMA), single-loop single-vector (SLSV), adaptive-loop (ADL) are adopted to evaluate the probabilistic constraint. In order to apply the ESO method to the RBSO, a sensitivity number is defined as the change of strain energy in the displacement constraint. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization.

A Novel Single Phase Synchronous Reference Frame Phase-Locked Loop with a Constant Zero Orthogonal Component

  • Li, Ming;Wang, Yue;Fang, Xiong;Gao, Yuan;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1334-1344
    • /
    • 2014
  • A novel single phase Phase-Locked Loop (PLL) is proposed in this paper to accurately and rapidly estimate the instantaneous phase angle of a grid. A conjugate rotating vector pair is proposed and defined to synthesize the single phase signal in the stationary reference frame. With this concept, the proposed PLL innovatively sets one phase input of the PARK transformation to a constant zero. By means of a proper cancellation, a zero steady state phase angle estimation error can be achieved, even under magnitude and frequency variations. The proposed PLL structure is presented together with guidelines for parameters adjustment. The performance of the proposed PLL is verified by comprehensive experiments. Satisfactory phase angle estimation can be achieved within one input signal cycle, and the estimation error can be totally eliminated in four input cycles for the most severe conditions.

Reliability-Based Shape Optimization Under the Stress Constraints (응력 제한조건하의 신뢰성 기반 형상 최적설계)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.469-475
    • /
    • 2010
  • The objective of this study is to integrate reliability analysis into shape optimization problem using the evolutionary structural optimization (ESO) in the application example. Reliability-based shape optimization is formulated as volume minimization problem with probabilistic stress constraint under minimization max. von Mises stress and allow stress. Young's modulus, external load and thickness are considered as uncertain variables. In order to compute reliability index, four methods, i.e., reliability index approach (RIA), performance measure approach (PMA), single-loop singlevector (SLSV) and adaptive-loop (ADL), are used. Reliability-based shape optimization design process is conducted to obtain optimal shape satisfying max. von Mises stress and reliability index constraints with the above four methods, and then each result is compared with respect to numerical stability and computing time.

Topology Optimization Considering Reliability (신뢰성을 고려한 위상최적설계)

  • Min, Seung-Jae;Bang, Seung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.468-473
    • /
    • 2004
  • New reliability-based topology optimization method is proposed by utilizing single-loop single vector approach, which approximate searching the most probable point in the probabilistic design domain analytically, to reduce the time cost and dealing with several constraints to handle practical design requirements. To examine uncertainties in the topology design of a structure, the modulus of elasticity of the material and applied loadings are considered as probabilistic design variables. The results of design examples show that the proposed method provides efficiency curtailing the time for the optimization process and accuracy satisfying the specified reliability.

  • PDF

Improvement of the Convergence Capability of a Single Loop Single Vector Approach Using Conjugate Gradient for a Concave Function (오목한 성능함수에서 공액경사도법을 이용한 단일루프 단일벡터 방법의 수렴성 개선)

  • Jeong, Seong-Beom;Lee, Se-Jung;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.805-811
    • /
    • 2012
  • The reliability based design optimization (RBDO) approach requires high computing cost to consider uncertainties. In order to reduce the design cost, the single loop single vector (SLSV) approach has been developed for RBDO. This method can reduce the cost in calculating deign sensitivity by elimination of the nested optimization process. However, this process causes the increment of the instability or inaccuracy of the method according to the problem characteristics. Therefore, the method may not give accurate solution or the robustness of the solution is not guaranteed. Especially, when the function is concave, the process frequently diverges. In this research, the concept of the conjugate gradient method for unconstrained optimization is utilized to develop a new single loop single vector method. The conjugate gradient is calculated with gradient directions at the most probable points (MPP) of previous cycles. Mathematical examples are solved for the verification of the proposed method. The numeri cal performances of the obtained results are compared to those of other RBDO methods. The SLSV approach using conjugate gradient is not greatly influenced by the problem characteristics and improves its convergence capability.

Synchronization loop by vector product in single-phase system (단상시스템에서 벡터적(vector product)에 의한 동기 루프)

  • 배기훈;기상우;조국춘;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.219-225
    • /
    • 1998
  • A Diode bridge rectifier and a phase-controlled thyristor bridge rectifier generate harmonics in power system. Nowadays, power factor and harmonics are important performance in electrical equipment for railway vehicle. Many researchers have been trying to improve the power factor and ac-side harmonics. Therefore the PWM converter has been used to operate at unity power factor and to reduce ac-side current harmonics. This paper proposes the synchronization loop by vector product in single-phase PWM converter. The proposed control method can realize the sinusolidal input current waveform and the effective unity power factor. The validity of the proposed control method is verified through the experimental result.

  • PDF

Finite Element Study of Ferroresonance in single-phase Transformers Considering Magnetic Hysteresis

  • Beyranvand, Morteza Mikhak;Rezaeealam, Behrooz
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.196-202
    • /
    • 2017
  • The occurrence of ferroresonance in electrical systems including nonlinear inductors such as transformers will bring a lot of malicious damages. The intense ferromagnetic saturation of the iron core is the most influential factor in ferroresonance that makes nonsinusoidal current and voltage. So the nonlinear behavior modeling of the magnetic core is the most important challenge in the study of ferroresonance. In this paper, the ferroresonance phenomenon is investigated in a single phase transformer using the finite element method and considering the hysteresis loop. Jiles-Atherton (JA) inverse vector model is used for modeling the hysteresis loop, which provides the accurate nonlinear model of the transformer core. The steady-state analysis of ferroresonance is done while considering different capacitors in series with the no-load transformer. The accurate results from copper losses and iron losses are extracted as the most important specifications of transformers. The validity of the simulation results is confirmed by the corresponding experimental measurements.

Performance analysis of atomic magnetometer and bandwidth-extended loop antenna in resonant phase-modulated magnetic field communication system

  • Hyun Joon Lee;Jung Hoon Oh;Jang-Yeol Kim;In-Kui Cho
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.727-736
    • /
    • 2024
  • Telecommunications through an electrically conductive medium require the use of carrier bands with very-low and ultralow frequencies to establish radiofrequency links in harsh environments. Recent advances in atomic magnetometers operating at very-low frequencies have facilitated the reception of digitally modulated signals. We demonstrate the transmission and reception of quadrature phase-shift keying (QPSK) signals using a multi-resonant loop antenna and atomic magnetometer, respectively. We report the measured error vector magnitude according to the symbol rate for QPSK modulation and analyze the bandwidth of a receiver based on the atomic magnetometer. The multi-resonant loop antenna noticeably enhances the bandwidth by over 70% compared with a single-loop antenna. QPSK modulation for a carrier frequency of 20 kHz and symbol rate of 150 symbols per second verifies the feasibility of demodulation, and the measured error vector magnitude and signal-to-noise ratio are 7.29% and 30.9 dB, respectively.