• Title/Summary/Keyword: Single-Cell Model

Search Result 364, Processing Time 0.03 seconds

Structure Prediction of Gasdermin a Receptor by Homology Modelling

  • Subathra Selvam
    • Journal of Integrative Natural Science
    • /
    • v.16 no.3
    • /
    • pp.97-102
    • /
    • 2023
  • The gasdermins are a family of recently identified pore-forming effector proteins that cause membrane permeabilization and pyroptosis, a lytic pro-inflammatory type of cell death. A role in the regulation of cell proliferation and/or differentiation is suggested by the differentiation status-specific expression of gasdermin proteins in epithelial tissues. One of the GSDM protein is Gasdermin A (GSDMA), which decreased in stomach and esophageal cancers, suggesting a tumor suppressor role. GSDMA receptor antagonists have been researched as potential treatments for inflammatory diseases and baldness. GSDMA's significance in a wide range of disorders makes it an important therapeutic target. As a result, homology modelling of the GSDMA receptor was undertaken in the current study using the crystal structures of Mus musculus (GSDMA3), Human gasdermin D (GSDMD), and Murine gasdermin D (murine GSDMD). The best model was chosen based on the validation results after 20 models were developed utilising single template-based approaches. The generated structures can be used for further binding site and docking studies in the future.

Increasing injection frequency enhances the survival of injected bone marrow derived mesenchymal stem cells in a critical limb ischemia animal model

  • Kang, Woong Chol;Oh, Pyung Chun;Lee, Kyounghoon;Ahn, Taehoon;Byun, Kyunghee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.657-667
    • /
    • 2016
  • Critical limb ischemia (CLI) is one of the most severe forms of peripheral artery diseases, but current treatment strategies do not guarantee complete recovery of vascular blood flow or reduce the risk of mortality. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported to have a paracrine influence on angiogenesis in several ischemic diseases. However, little evidence is available regarding optimal cell doses and injection frequencies. Thus, the authors undertook this study to investigate the effects of cell dose and injection frequency on cell survival and paracrine effects. MSCs were injected at $10^6$ or $10^5$ per injection (high and low doses) either once (single injection) or once in two consecutive weeks (double injection) into ischemic legs. Mice were sacrificed 4 weeks after first injection. Angiogenic effects were confirmed in vitro and in vivo, and M2 macrophage infiltration into ischemic tissues and rates of limb salvage were documented. MSCs were found to induce angiogenesis through a paracrine effect in vitro, and were found to survive in ischemic muscle for up to 4 weeks dependent on cell dose and injection frequency. In addition, double high dose and low dose of MSC injections increased vessel formation, and decreased fibrosis volumes and apoptotic cell numbers, whereas a single high dose did not. Our results showed MSCs protect against ischemic injury in a paracrine manner, and suggest that increasing injection frequency is more important than MSC dosage for the treatment CLI.

Establishment of Functional Cells for Vascular Defect Disease from Human Embryonic Stem Cell via Region Sorting Depending on Cell Volume (세포 크기 차이를 이용한 유세포 분석을 통한 인간배아줄기세포 유래 기능성 혈관세포의 확립)

  • Lee, Ji-Hye;Kim, Ju-Mi;Chung, Hyung-Min;Chae, Jung-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.364-373
    • /
    • 2011
  • Human embryonic stem cells have been highlighted as a valuable cellular source in the regenerative medicine field, due to their pluripotency. However, there is the challenge of the establishment of specific functional cell type forms of undifferentiated human embryonic stem cells (hESC). To establish and purify functional cell types from hESCs, we differentiated undifferentiated hESCs into vascular lineage cells and sorted the specific cell population from the whole cell population, depending on their cell volume, and compared them with the non-sorted cell population. We observed that about 10% of the PECAM positive population existed in the VEGF induced differentiating human embryoid body (hEB), and differentiated hEBs were made into single cells for cell transplantation. After making single cells, we performed cell sorting using a fluorescence-activated cell sorter (FACs), according to their cell volume on the basis of FSC region gating, and compared their therapeutic capacity with the non-sorted cell population through cell transplantation into hindlimb ischemic disease model mice. 4 Weeks after cell transplantation, the recovery rate of blood perfusion reached 54% and 17% in the FSC regions of sorted cells- and non-sorted cells, respectively. This result suggests that derivation of a functional cell population from hESCs can be performed through cell sorting on the basis of cell volume after preliminary differentiation induction. This approach may then greatly contribute to overcoming the limitations of marker sorting.

A Structured and Multi-cellular Model of Starch Biosynthesis in Potato

  • Saithong, Treenut;Saraboon, Piyaporn;Meechai, Asawin;Cheevadhanarak, Supapon;Bhumiratana, Sakarindr
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.151-155
    • /
    • 2005
  • Recently, systems biology has been increasingly applied to gain insights into the complexity of living organisms. Many inaccessible biological information and hidden evidences fur example flux distribution of the metabolites are simply revealed by investigation of artificial cell behaviors. Most bio-models are models of single cell organisms that cannot handle the multi-cellular organisms like plants. Herein, a structured and multi-cellular model of potato was developed to comprehend the root starch biosynthesis. On the basis of simplest plant cell biology, a potato structured model on the platform of Berkley Madonna was divided into three parts: photosynthetic (leaf), non-photosynthetic (tuber) and transportation (phloem) cells. The model of starch biosynthesis begins with the fixation of CO$_2$ from atmosphere to the Calvin cycle. Passing through a series of reactions, triose phosphate from Calvin cycle is converted to sucrose which is transported to sink cells and is eventually formed the amylose and amylopectin (starch constituents). After validating the model with data from a number of literatures, the results show that the structured model is a good representative of the studied system. The result of triose phosphate (DHAP and GAP) elevation due to lessening the aldolase activity is an illustration of the validation. Furthermore, the representative model was used to gain more understanding of starch production process such as the effect of CO$_2$ uptake on qualitative and quantitative aspects of starch biosynthesis.

  • PDF

Optimal Design of Single-sided Linear Induction Motor Using Genetic Algorithm (유전알고리즘을 이용한 편측식 선형유도전동기의 최적설계)

  • Ryu, Keun-Bae;Choi, Young-Jun;Kim, Chang-Eob;Kim, Sung-Woo;Im, Dal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.923-928
    • /
    • 1993
  • Genetic algorithms are powerful optimization methods based on the mechanism of natural genetics and natural selection. Genetic algorithms reduce chance of searching local optima unlike most conventional search algorithms and especially show good performances in complex nonlinear optimization problems because they do not require any information except objective function value. This paper presents a new model based on sexual reproduction in nature. In the proposed Sexual Reproduction model(SR model), individuals consist of the diploid of chromosomes, which are artificially coded as binary string in computer program. The meiosis is modeled to produce the sexual cell(gamete). In the artificial meiosis, crossover between homologous chromosomes plays an essential role for exchanging genetic informations. We apply proposed SR model to optimization of the design parameters of Single-sided Linear Induction Motor(SLIM). Sequential Unconstrained Minimization Technique(SUMT) is used to transform the nonlinear optimization problem with many constraints of SLIM to a simple unconstrained problem, We perform optimal design of SLIM available to FA conveyer systems and discuss its results.

  • PDF

Study on the Void Growth and Coalescence in F.C.C. Single Crystals (F.C.C. 단결정재에서 기공의 성장과 합체에 관한 연구)

  • Ha, Sang-Yul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.319-326
    • /
    • 2008
  • In this study, we investigate the deformation behavior of F.C.C. single crystals containing micro- or submicron-sized voids by using three dimensional finite element methods. The locally homogeneous constitutive model for the rate-dependent crystal plasticity is integrated based on the backward Euler method and implemented into a finite element program (ABAQUS) by means of user-defined subroutine (UMAT). The unit cell analysis has been investigated to study the effect of stress triaxiality and crystallographic orientations on the growth and coalescence of voids in F.C.C. single crystals.

Dynamic Network Loading Model based on Moving Cell Theory (Moving Cell Theory를 이용한 동적 교통망 부하 모형의 개발)

  • 김현명
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.113-130
    • /
    • 2002
  • In this paper, we developed DNL(Dynamic Network Loading) model based on Moving cell theory to analyze the dynamic characteristics of traffic flow in congested network. In this paper vehicles entered into link at same interval would construct one cell, and the cells moved according to Cell following rule. In the past researches relating to DNL model a continuous single link is separated into two sections such as running section and queuing section to describe physical queue so that various dynamic states generated in real link are only simplified by running and queuing state. However, the approach has some difficulties in simulating various dynamic flow characteristics. To overcome these problems, we present Moving cell theory which is developed by combining Car following theory and Lagrangian method mainly using for the analysis of air pollutants dispersion. In Moving cell theory platoons are represented by cells and each cell is processed by Cell following theory. This type of simulation model is firstly presented by Cremer et al(1999). However they did not develop merging and diverging model because their model was applied to basic freeway section. Moreover they set the number of vehicles which can be included in one cell in one interval so this formulation cant apply to signalized intersection in urban network. To solve these difficulties we develop new approach using Moving cell theory and simulate traffic flow dynamics continuously by movement and state transition of the cells. The developed model are played on simple network including merging and diverging section and it shows improved abilities to describe flow dynamics comparing past DNL models.

Determination of the linear elastic stiffness and hygroexpansion of softwood by a multilayered unit cell using poromechanics

  • Gloimuller, Stefan;de Borst, Karin;Bader, Thomas K.;Eberhardsteiner, Josef
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.229-265
    • /
    • 2012
  • Hygroexpansion of wood is a known and undesired characteristic in civil engineering. When wood is exposed to changing environmental humidity, it adsorbs or desorbs moisture and warps. The resulting distortions or - at restrained conditions - cracks are a major concern in timber engineering. We herein present a multiscale model for prediction of the macroscopic hygroexpansion behavior of individual pieces of softwood from their microstructure, demonstrated for spruce. By applying poromicromechanics, we establish a link between the swelling pressure, driving the hygroexpansion of wood at the nanoscale, and the resulting macroscopic dimensional changes. The model comprises six homogenization steps, which are performed by means of continuum micromechanics, the unit cell method and laminate theory, all formulated in a poromechanical framework. Model predictions for elastic properties of wood as functions of the moisture content closely approach corresponding experimental data. As for the hygroexpansion behavior, the swelling pressure has to be back-calculated from macroscopic hygroexpansion data. The good reproduction of the anisotropy of wood hygroexpansion, based on only a single scalar calibration parameter, underlines the suitability of the model. The multiscale model constitutes a valuable tool for studying the effect of microstructural features on the macroscopic behavior and for assessing the hygroexpansion behavior at smaller length scales, which are inaccessible to experiments. The model predictions deliver input parameters for the analysis of timber at the structural scale, therewith enabling to optimize the use of timber and to prevent moisture-induced damage or failure.

Current-Voltage Characterization of Silicon Quantum Dot Solar Cells

  • Kim, Dong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.143-145
    • /
    • 2009
  • The electrical and photovoltaic properties of single junction silicon quantum dot solar cells are investigated. A prototype solar cell with an effective area of 4.7 $mm^2$ showed an open circuit voltage of 394 mV and short circuit current density of 0.062 $mA/cm^2$. A diode model with series and shunt resistances has been applied to characterize the dark current-voltage data. The photocurrent of the quantum-dot solar cell was found to be strongly dependent on the applied voltage bias, which can be understood by consideration of the conduction mechanism of the activated carriers in the quantum dot imbedded material.

Physical Property Models and Single Cells Analysis for Solid Oxide Fuel Cell (고체산화물 연료전지를 위한 물성치 모델 및 단전지 해석)

  • Park, Joon-Guen;Kim, Sun-Young;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.379-381
    • /
    • 2009
  • The simulation model for metal-supported Solid Oxide Fuel Cell(SOFC) is developed in this study. Open circuit voltage is calculated using Nernst equation and Gibbs free energy is required by thermodynamic. The exchange current densities are compared with experimental results since exchange current density is most effective factor for the activation loss. Liu's study is used for the exchange current density of cathode, BSCF, and Koide's result is applied for the exchange current density of anode, Ni/YSZ. For the ohmic loss, ionic conductivity of YSZ is described from Kilner's mode and the data are compared with Wanzenberg's experimental data. Diffusivity is an important factor for the mass transfer through the porous medium. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results.

  • PDF