• 제목/요약/키워드: Single source

검색결과 2,217건 처리시간 0.028초

Source Information Estimation Using Enemy's Single-Ping and Underwater Geographic Information in Non-Cooperative Bistatic Sonar (비협동 양상태 소나에서 적함 송신기의 단일 능동 신호와 해저 지형 정보를 이용한 송신기 정보 추정)

  • Lee, Dong-Hwa;Nam, Jong-Geun;Jung, Tae-Jin;Lee, Kyun-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제13권2호
    • /
    • pp.196-203
    • /
    • 2010
  • The bistatic sonar operations using a spatially-separated source and receiver are classified into cooperative and non-cooperative operations. In the cooperative operation, an active signal of a friendly ship is used and the source information is known previously. In the non-cooperative operation, an active signal of the enemy is used and it is difficult to find out the source information. The source information consists of the range, speed, course and frequency of the source. It gives advantage to operating bistatic sonar. This paper suggests a method of estimating the source information with geographic information in the sea and the single-ping of the enemy. The source range is given using one geographic point. And the source speed, course and the frequency of the enemy's source signal are given using two geographic points. Finally, the validity of the scheme is confirmed through a simulation study.

Fabrication Tolerance of InGaAsP/InP-Air-Aperture Micropillar Cavities as 1.55-㎛ Quantum Dot Single-Photon Sources

  • Huang, Shuai;Xie, Xiumin;Xu, Qiang;Zhao, Xinhua;Deng, Guangwei;Zhou, Qiang;Wang, You;Song, Hai-Zhi
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.509-515
    • /
    • 2020
  • A practical single photon source for fiber-based quantum information processing is still lacking. As a possible 1.55-㎛ quantum-dot single photon source, an InGaAsP/InP-air-aperture micropillar cavity is investigated in terms of fabrication tolerance. By properly modeling the processing uncertainty in layer thickness, layer diameter, surface roughness and the cavity shape distortion, the fabrication imperfection effects on the cavity quality are simulated using a finite-difference time-domain method. It turns out that, the cavity quality is not significantly changing with the processing precision, indicating the robustness against the imperfection of the fabrication processing. Under thickness error of ±2 nm, diameter uncertainty of ±2%, surface roughness of ±2.5 nm, and sidewall inclination of 0.5°, which are all readily available in current material and device fabrication techniques, the cavity quality remains good enough to form highly efficient and coherent 1.55-㎛ single photon sources. It is thus implied that a quantum dot contained InGaAsP/InP-air-aperture micropillar cavity is prospectively a practical candidate for single photon sources applied in a fiber-based quantum information network.

Single-phase Active Power Filter Based on Rotating Reference Frame Method for Harmonics Compensation

  • Kim, Jin-Sun;Kim, Young-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.94-100
    • /
    • 2008
  • This paper presents a new control method of single-phase active power filter (APF) for the compensation of harmonic current components in nonlinear loads. To facilitate the possibility of complex calculation for harmonic current detection of the single phase, a single-phase system that has two phases was constructed by including an imaginary second-phase giving time delay to the load current. The imaginary phase, which lagged the load current T/4 (Here T is the fundamental cycle) is used in the conventional method. But in this proposed method, the new signal as the second phase is delayed by the filter. Because this control method is applied to a single-phase system, an instantaneous calculation was developed by using the rotating reference frames synchronized to source-frequency rather than by applying instantaneous reactive power theory that uses the conventional fixed reference frames. The control scheme of single-phase APF for the current source with R-L loads is applied to a laboratory prototype to verify the proposed control method.

The Development of a Programmable Single-Phase AC Power Source with a Linear Power Amplifier

  • Jeon, Jeong-Chay;Jeon, Hyun-Jae;Yoo, Jae-Geun;Son, Jae-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제21권9호
    • /
    • pp.39-46
    • /
    • 2007
  • This paper presents a programmable single-phase ac power source that provides a sinusoidal output voltage with an adjustable output amplitude and frequency over a wide range as well as an arbitrary waveform. The ac power source under consideration have a linear power amplifier. The desired output values can be programmed with a personal computer. The power source operates at 220[V]/60[Hz] mains and the output voltage is isolated from the input circuit. The system consists mainly of a power converter to generate and amplify the waveform signal, a controller to control the desired output signal and measure the output parameters, and a control program to set the desired output and display the values. The prototype ac power source was constructed and tested with the results demonstrating a good performance.

The Influence of the Number of Electrodes, the Position and Direction of a Single Dipole on the Relation Between S/N ratio and EEG Dipole Source Estimation Errors (뇌전위의 단일 쌍극자 모델에서 전극의 개수, 쌍극자의 위치 및 방향이 S/N과 쌍극자 추정 오차사이의 관계에 미치는 영향에 관한 시뮬레이션 연구)

  • 김동우;배병훈
    • Journal of Biomedical Engineering Research
    • /
    • 제15권1호
    • /
    • pp.71-76
    • /
    • 1994
  • In the source localization using single dipole model, the influence of the number of electrodes, the position and direction of a single dipole on the relation between S/W ratio and dipole parameter estimation errors is important. Monte Carlo simulation was used to investigate this influence. The forward problem was calculated using three spherical shell model, and dipole parameters were optimized by means of simplex method. As the number of electrodes became large, as the dipole went from midbrain to cortex, and as the direction of dipole changed from radial to tangential, the average and standard deviation of estimation errors became small.

  • PDF

Sinusoidal Current Control of Single-Phase PWM Converters under Voltage Source Distortion Using Composite Observer (왜곡된 전원 전압하에서 Composite 관측기를 이용한단상 PWM 컨버터의 정현파 전류 제어)

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.466-476
    • /
    • 2011
  • In this paper, a high-performance current control for the single-phase PWM converter under distorted source voltages is proposed using a composite observer. By applying the composite observer, the fundamental and high-order harmonic components of the source voltage and current are extracted without a delay. The extracted fundamental component is used for a phase-lock loop (PLL) system to detect the phase angle of the source voltage. A multi-PR (proportional-resonant) controller is employed to regulate the single-phase line current. The high-order harmonic components of the line current are easily eliminated, resulting in the sinusoidal line current. The simulation and experimental results have verified the validity of the proposed method.

Effective Bandwidth for a Single Server Queueing System with Fractional Brownian Input

  • Kim, Sung-Gon;Nam, Seung-Yeob;Sung, Dan-Keun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.1-8
    • /
    • 2003
  • The traffic patterns of today's IP networks exhibit two important properties: self-similarity and long-range dependence. The fractional Brownian motion is widely used for representing the traffic model with the properties. We consider a single server fluid queueing system with input process of a fractional Brownian motion type. Formulas for effective bandwidth are derived in a single source and multiple source cases.

  • PDF

Single-Phase Series Type Quasi Z-Source Voltage Sag-Swell Compensator for Voltage Compensation of Entire Region (전 영역의 전압보상을 위한 단상 직렬형 Quasi Z-소스 전압 Sag-Swell 보상기)

  • Eom, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.322-332
    • /
    • 2013
  • Conventional single-phase series quasi Z-source voltage compensator can not compensate for voltage sag less than 50% that frequently occurs in the industrial field. In this study, single-phase series quasi Z-source voltage sag-swell compensator which can compensate the voltage variation of entire range is proposed. The proposed system is composed of two quasi Z-source AC-AC converters connected in series with output terminal stage. Voltage sag less than 50% could be compensated by the intersection switching control of the upper converter duty ratio and of the upper converter duty ratio. Also the compensation voltage and its flowchart for each compensation mode are presented for entire sag-swell region. To confirm the validity of the proposed system, a DSP(DSP28335) controlled experimental system was manufactured. As a result, the proposed system could compensate for the voltage sag/swell of 20% and 60%. Finally, voltage compensation factor and THD(Total Harmonic Distortion) according to voltage variation and load change were measured, and voltage quality shows a good results.

Output Characteristics of Capacitor-run type Single Phase Induction Motor considering Capacitance (구동 커패시터의 용량에 따른 단상유도전동기 출력특성에 관한 연구)

  • Kim, Cherl-Jin;Lee, Dal-Eun;Jin, Yong-Sun;Choi, Chul-Yong;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.848-850
    • /
    • 2002
  • Single phase induction motor is directly used usual source, it can be a source of an appliance such as mechanical fan, refrigerator, washing machine, etc. Especially capacitor-run single phase induction motor is suitable to make more inexpensive and high efficient products because it is more high efficiency, and good to start than other single phase induction motors. Generally, voltage and current of capacitor-run single phase induction motor transfer to the part of positive phase and negative phase based on two motor theory. In this paper, we simulate the torque characteristics to capacitance variation from single phase induction motor's equivalent circuit. Through the test using the real motor, we compare and investigate the maximum torque of run state related with capacitance and the adequacy of the converted model.

  • PDF