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Effective Bandwidth for a Single Server Queueing System
with Fractional Brownian Input
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ABSTRACT

The traffic patterns of today’s IP networks exhibit two important properties:
self-similarity and long-range dependence. The fractional Brownian motion is widely
used for representing the traffic model with the properties. We consider a single
server fluid queueing system with input process of a fractional Brownian motion
type. Formulas for effective bandwidth are derived in a single source and multiple
sources cases.
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1. INTRODUCTION

The traffic patterns of today’s IP networks have been known to exhibit self-similarity and
long-range dependence [1,9, 17]. Neither of them can be modeled using conventional Markovian
models. Self-similarity or statistical self-similarity implies that fluctuation of traffic rates shows
similar patterns throughout several time scales. Long-range dependence means that the corre-
lation decays more slowly than that of conventional traffic models. These phenomena are not
mutually independent. Rather, they are indispensably related. For applications of self-similarity
and long-range dependence in other fields, readers can refer to [20].

Many attempts to model traffic traces with the above properties have been made {4, 8,13,
15,19]. Among them, a fractional Brownian motion(fBm) model is widely used. It has been
shown empirically [1,9, 17] that the holding times of a session, such as ftp, telnet, and http have
heavy-tailed distributions. In other words, if G is the distribution function of the holding time,
then G is said to be heavy-tailed if li; oo (1 — G(z+¥))/(1 = G(z)) = 1, y > 0. Thus, the input
traffic process can be modeled as the aggregation of a large number of on-off sources, where the
length of a on-period has a heavy-tailed distribution. Many authors pointed out that long-range
dependency in internet traffic can be explained by using the long-range dependency of on-off
input models. In [22], it was shown that as the number of on-off sources grows infinitely large,
the input process of the on-off model converges to an fBm when suitably normalized. Thus, the
fBm model can be used as a traffic model when the aggregation level is sufficiently high. Since
an fBm model is uniquely represented by only three parameters, it is a parsimonious one.

Effective bandwidth is defined as the minimum service rate to guarantee a required Qual-
ity of Service (QoS). Many studies have focused on Markovian type input traffic models (3, 5].
The methods used in the studies can not be applied to obtain the effective bandwidth for a
queueing system with an fBm or long-range dependent input process. There are also some other
definitions for effective bandwidth [7,21]. Examples of QoS include packet/cell loss probability,
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mean delay, and delay jitter. Loss probability has been considered traditionally in communica-
tion networks. Recent network environment, which is required to support applications such as
Internet Telephony, video on demand, and video conferencing, may require specific mean delay
and loss probability values. For general input processes, however, it is not easy to obtain the
loss probability and the mean delay analytically in a finite buffered queueing system. Thus, the
overflow probability and the mean delay in the corresponding infinite buffered queueing system
are generally obtained as the approximate values of the loss probability and the mean delay in
the finite queueing system.

We, in this paper, consider a single server fluid queueing system with a service rate of C.
The input process is modeled as an fBm model, which will be presented in the next section
explicitly. Let @ denote the queue length in steady state. For a given buffer threshold b,
overflow probability constraint L, and mean delay constraint d, the required QoS is given by

Pr{Q > b} <L and E[Q] <Cd. (1.1)
Then, the effective bandwidth e(b, L, d) is defined as the minimum value such that
C>e,L,d = Pr{Q>b}<LandE[Q] <Cd (1.2)

We propose a scheme to obtain the effective bandwidth using a distribution function F for
both single and multiple sources in Sections 3, where F' is the distribution function of queue
length in a special case. A method for the numerical evaluation of F is given in Section 4.

2. FRACTIONAL BROWNIAN INPUT PROCESS

A continuous-time stochastic process {Y(t),t > 0} is self-similar with a Hurst parameter
H(H > 0) iff Y(at) and a” Y () have identical finite-dimnensional distributions for all @ > 0, i.e.,
for all finite set of positive real numbers {¢1,%2,...,¢tn},

{Y(at1),Y (at2),...,Y(atn)} £ {aY(t1),a" Y (t2),...,a" Y ()},

where £ represents the same in distribution. If {Y(t),t > 0} has stationary increments, then
we can construct a stationary increment process {Zn,n > 0} defined as

Zn=Y((n+1)7)-Y(nr), n=0,1,2,...

where 7 is a positive constant. Then, the autocorrelation function v(-) of {Zn,n > 0} is given
by
1
v(k) = S{(k + )2H ok 4 (k- 1)), k=1,2,... (2.1)

Note that (k) does not depend on 7. Suppose that a stochastic process has stationary incre-
ments and the autocorrelation function of the incremental process is the same as Eqn. (2.1).
Then, it is said to be second-order self-similar with Hurst parameter H. For the case that H is
in (1/2,1], it is long-range dependent in the sense that

> (k) = oo,
k=0

since v(k) = O(k*772) as k goes to infinite.
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A fractional Brownian motion {Y(t),t > 0} of Hurst parameter H (0 < H < 1} is a zero
mean Gaussian process with covariance function

Cov(Y (t1),Y(t2)) = "; {|t1|2” P -t - tzle} . (2.2)

When o = 1, it is called the standard fractional Brownian motion. A fractional Brownian motion
is a generalized model of the Brownian motion whose Hurst parameter is 1/2. Mandelbrot and
Van Ness [11] showed that fractional Brownian motions are self-similar process with stationary

increments.
A traffic model using the fractional Brownian motion (fBm model) was introduced by Nor-

ros [13). Let A(t) be the traffic amount during time [0,¢] and let {Bu(t),t > 0} be a standard
fractional Brownian motion with Hurst parameter H. Then, the fBm model is

A(t)=mt 4+ oBy(t). (2.3)

Since {A(t),t > 0} is just a linear transformation of the {By(t),t > 0}, the autocorrelation
function y(k) of {A({(n + 1)7) — A(n7),n > 0} is given by Eqn. (2.1). Thus, {A(t),t > 0} is
second-order self-similar with Hurst parameter H. If the value of H is in (1/2,1], then it is also
long-range dependent. The fBm model can be generated using the generation algorithms [2, 16],
which are based on the fast fourier transform and thus their complexities are O(nlog(n)).

3. EFFECTIVE BANDWIDTH FOR SINGLE AND MULTIPLE SOURCES

We consider a single server queueing system in which the service rate is C and the input
process is given by the fBm model (2.3). Let a = C' —m. We assume that a > 0 for the stability
of the queueing system. Then, from the Reich’s formula [18], the queue length in stationary
state, Qa,s, 1S given by

Qa,c = sup(A(t) — Ct)
t>0

= S\;p(UBH(t) — at). 3.1)

Using the above representation, we obtain the following theorem:

THEOREM 3.1. Let {Bu(t),t > 0} be a standard fractional Brownian motion with Hurst
parameter H and let a and o be positive real numbers. If we define a random variable Qa,0 as
Qa0 = sup,»o(0Bau(t) — at), then it follows that

g/ (—H)
Qoo = m@l,l,
where ~ represents the same in distribution.
Now we can obtain a form of the effective bandwidth. Let Q™ denote Q1,1 andletp=1/H—-1
for simplicity. The above theorem implies that

. oQf/(1~H)
Pr{Qa,a > b} = Pr{Q > mb} (32)
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Let F(-) be the distribution function of Q" and let br is the (1 — L) quantile of F', i.e., F(br) =
1 — L. Note that Q*, F and bz, depend on H. From the definitions of F and b, it follows that

. oH/(1-H)
Pr{@" > pvITETE b} <L &

H/(1-H)

«
7yt 2 b

By Eqn. (3.2) and the above equation, we obtain that
VA LAN
Pr{Qac >b} <L &0 > <a.
Since @ = C — m, the minimum service rate e, satisfying that Pr{Qa,. > b} < L is calculated

as b\ P
er =m+o'/# (—g’-) . (3.3)

The minimum service rate eg satisfying that E{Qa,0] £ Cd is calculated as follows. Theo-

rem 3.1 implies that
. g/ -H)
E[Qa,s] € Cd & E[Q"] £ ——=—7+Cd (3.4)

ci/a-m -
1 /d\P
v EBQRT)/4)”
cr -
Substituting & = C — m in the above equation, we can see that eq4 is a solution of the following

and it is converted to

E[Qas] <Cd & o

nonlinear equation:
“1/4\P
1y (BIQ")/) 35)

P

If we let w = UI/H(IE[Q‘]/d)”, then eq is the z-value of the intersection point of an increasing

r=m++0o

function
y = Z!
and a decreasing function
w
y=m + -z—p.

The intersection point exists and it is unique, which implies the existence and uniqueness of eq.

THEOREM 3.2. Suppose that we have a single server queueing system with input process
A(t) = mt + o Bu(t), where Bu(t) is a standard fBm with Hurst parameter H. Let e be the
effective bandwidth for the QoS requirement that the overflow probability Pr{Q > b} is less than
or equal to L and the mean delay is less than or equal to d. Then,

P
e = max{m + o'/¥ (%) ,ed},

where eq is the unique solution of the equation = m + o/ " (E[Q"]/d)P /=?.

Now, we consider the case that there exist multiple sources with the same Hurst parameter
H. Then, the aggregated input process is also an fBm with the parameter H. It is natural to
assume that the Hurst parameters of the sources can be different from each other. However,
the aggregate input process in this case is not an fBm, but just an asymptotically self-similar
process with the Hurst parameter of the maximum value among the Hurst parameters of each
source. This makes it difficult to analyze the aggregated input process. This problem remains
for further study.
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Let J be the number of classes and n; be the number of sources of class j. The input vector
is defined as n = (n1,n2,...,ns). Let A;;(t) denote the input process for the i-th source of the
j-th class. We assume that

Ai(t) = mst + 0; BE(t),
where B} (t) is a standard fractional Brownian motion with Hurst parameter H, m; is the mean
input rate of j-th class sources, and U? is its variance. The aggregated input process A(t) can
be written by

J n

AR =) Au0)

j=1i=1
=(n-m)t+ (n-03)? Bu(t),

where m = (my, me,...,my), o’ = (of,a%, e ,03), and n-m is the inner product of n and m.
The above form of the aggregated input process is the same as Eqn. (2.3), in whichm =n-m
and ¢ = (n-o?)*2. Then, we can apply Theorem 3.2. Under the same QoS requirement as

Eqn. (1.1), the effective bandwidth e(n) is given by

e(n) = max{er(n), ea(n)}, (3.6)
where er,(n) =n-m+ (n-o2)/2" (b /b)?, and eq(n) is the unique solution of the equation

* p
I:n'm+(n'0'2)l/2H(E[Q l/d)P
xP
To investigate the effect of multiplexing gain, we consider the case that n identical sources
given by Eqn. (2.3) are multiplexed. For fair comparison, we let the buffer threshold be nb,

where b is the buffer threshold in a single source case. Then, the required QoS is
Pr{Q >nb} <L and E[Q]<Cd.
The effective bandwidth for the above QoS can be obtained by Eqn. (3.6).
e(n) = max{er(n),eq(n)}, (3.7
where er(n) = nm +n*"2Ha /4 (b, /b)? and ey(n) is the unique solution of the equation

120 /1 (E[Q7)/d)” (3.8)

r=nm-+n
xP

We define an index of multiplexing gain as follows:

) = e
In) = o5

If I(n) > 1, then we say that there is a multiplexing gain. As the index I(n) increases, the
multiplexing gain increases. From Eqn. (3.7), it follows that

1
max{m + o7 (b, /b)", e
I(n) — {_—1— L( / ) d} , (3.9)
max{m +n~ 27 g7 (by /b)P,eq4(n)/n}
where eq = e4(1). The following theorem says that that there is a multiplexing gain for all
positive integer n > 2 and also gives some properties of I(n).

THEOREM 3.3. The multiplezring gain index I(n),n = 1,2,... is strictly-increasing and its
upper bound is
1
hsi P
lim I(n) = max{m + o 7 (br, /b) ,Cd}.

n—oo m
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4. NUMERICAL EVALUATION OF THE DISTRIBUTION Fjy

From Theorem 3.2, it suffices to know the value of by, and IE[Q"] in order to find the effec-
tive bandwidths for a given QoS requirement (1.1) under the input traffic process of the fBm
model (2.3). Since by, = F~}(1 — L) and E[Q*] = [;7(1 — F(x))dz, finding the effective band-
width can be converted into evaluating the distribution function F'(y), which is a real valued
function of two variables, H and y. We use Fy(y) instead of F(y) to clarify the dependence on
H. To our best knowledge, there is no explicit formula for Fy(y).

The Reich’s formula, Q* = sup,o(Br(t) —t) can be used for evaluating Fy(y). Suppose
that we simulate the queue length p;ocess with a sufficiently long input trace of length T and
we do this n times. Let n; be the number of times such that sup,<,<r(Br(t) — t) is less than
y. If we assume that such an event corresponds to the event that sup,»o(Bu (t) —t) is less than
y with a high probability, then we may estimate F§(y) by 1 — ny/n. However, it is not-easy to
know how large T is sufficient for a reliable estimation. Moreover, if it is possible, the required
value of T is very huge for large values of y. Thus, we need a concept of importance sampling,
which enables a fast simulation. Michna {12] proposed an importance sampling method for an
input process of fractional Brownian motion.

Consider the following zero-mean Gaussian process

M(@t) = /Otw(t,s)dBH(s),

where
crs2H(t — g)/2 s € (0,t)
w(t,s) =
0, s & (0,¢)
and ¢; = [H(2H —1)B(3/2 — H,H —1/2)]"! and B(:,") is the beta function. Norros et al. [14]
proved that the zero-mean Gaussian process {A(t),¢ > 0} has independent increments and

E[M2(t)] = &t*72H,

where ¢; = [H(2H — 1)(2 — 2H)B(H - 1/2,2 - 2H)]7/%. Thus, it is a martingale, ie.,
E[M(t)|Fs] = M(s),t > s, where F; is the set of all possible sample paths up to time s.
They also proved that the stochastic exponent of M(t),

E(M) = exp{M(1) - SEIM*(D)]}

is also a martingale. Using some properties of £;(M), Michna [12] obtained the following theo-

rem.
Theorem 4.1 (Michna) Let 7o = inf{t|sup,o Bu(t) +at >y} and let 7 = 7-1. Then,
Pr{r < oo} = E{€-, {—(1 + a)M}].

Suppose that we generate n sample paths of Bg)(t) + at and obtain the stopping times i
for each i, i = 1,2,...,n. Since Pr{Q* > y} = Pr{7 < oo}, the above theorem implies that a
naive estimator of Ff(y) is given by

F) = 2 3 exp(=(1+ )M () - 51+ 0’ ). (41)

i=1
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In real applications, we generate a sample path By (t) in discrete manner. We first generate
the incremental process By ((t+1)-6)— By (t-6), t =0,1,2,...in each unit time interval of length
5, and use it to generate a sample path. Let Fu,s be the stationary distribution of the queue
length in the corresponding queueing system, where the inputs of size By ((t+1)-6) — Bu (t-6)
occur discretely with interval 6, instead of the continuous process B (t) and let ﬁ'f,,é(y) be the
estimator of Ffj ;(y) by Eqn. (4.1). Suppose that each sample path is generated independently.
Then, ET((“-) {-@1 +a)M@},i=1,2,...,n are independent and identically distributed. Thus, for
sufficiently large n, the estimator F,i’&(y) is asymptotically normal, i.e., we can assume that

2

[C c €
Fiis(y) ~ N(Fis(y), ~—7 )

where ¢ is the sample standard deviation of £,,(—(1+a)M). Clearly, F§ ;(-) converges to Fi(-)

as 6 decreases to zero. One can choose various values of a. Question is which value of a is the
most efficient. It may be dependent on H.
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