• Title/Summary/Keyword: Single point diamond turning machine

Search Result 12, Processing Time 0.02 seconds

Micro-Crack Analysis from Ultra-Precision Diamond Turning of IR Optic Material (적외선 광학 소재의 초정밀 선삭가공시 발생하는 미세균열 연구)

  • Jeong, Byeongjoon;Kim, Geon-Hee;Myung, Tae Sik;Chung, Eui-Sik;Choi, Hwan-Jin;Yeo, In Ju;Jeon, Minwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.905-910
    • /
    • 2016
  • Infrared (IR) optic lens can be fabricated by a single point diamond turning (SPDT) machine without subsequent polishing process. However, this machining process often leaves micro-cracks that deteriorate the surface quality. In this work, we propose an experimental design to remove micro-cracks on IR lens. The proposed design gathered data between cutting process condition and Rt surface roughness. This is of great importance because the scale of micro-cracks is a few micrometer. Rt surface roughness is suitable for analyzing maximum peak height signals of the profile. The experimental results indicate that feed per revolution variable is one of the most dominant variable, affecting the generation micro-cracks on IR lens surfaces.

The characteristics of Ultra Precision Machine of Optical crystals for Infrared Ray (적외선 광학소자의 초정밀 절삭특성에 관한 연구)

  • Kim G.H.;Yang Y.S.;Kim H.S;Sin H.S.;Won J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.414-417
    • /
    • 2005
  • Single point diamond turning technique for optical crystals is studied in this paper. The main factors which are influential the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimal machining conditions for ductile cutting of optical crystals and to apply the SPDT technique to the manufacturing of ultra precision optical components of brittle material(Ge). Many technical challenges are being tried for the large space infrared telescope, which is one of the major objectives of the National Strategic Technology Road Map (NSTRM).

  • PDF