• Title/Summary/Keyword: Single photon detection

Search Result 54, Processing Time 0.02 seconds

Correction for SPECT image distortion by non-circular detection orbits (비원형 궤도에서의 검출에 의한 SPECT 영상 왜곡 보정)

  • Lee, Nam-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.156-162
    • /
    • 2007
  • The parallel beam SPECT system acquires projection data by using collimators in conjunction with photon detectors. The projection data of the parallel beam SPECT system is, however, blurred by the point response function of the collimator that is used to define the range of directions where photons can be detected. By increasing the number of parallel holes per unit area in collimator, one can reduce such blurring effect. This approach also, however, has the blurring problem if the distance between the object and the collimator becomes large. In this paper we consider correction methods for artifacts caused by non-circular orbit of parallel beam SPECT with many parallel holes per detector cell. To do so, we model the relationship between the object and its projection data as a linear system, and propose an iterative reconstruction method including artifacts correction. We compute the projector and the backprojector, which are required in iterative method, as a sum of convolutions with distance-dependent point response functions instead of matrix form, where those functions are analytically computed from a single function. By doing so, we dramatically reduce the computation time and memory required for the generation of the projector and the backprojector. We conducted several simulation studies to compare the performance of the proposed method with that of conventional Fourier method. The result shows that the proposed method outperforms Fourier methods objectively and subjectively.

  • PDF

The Diagnostic Value of 99mTc DMSA Renal Scan SPECT Images in Addition to Planar Image in Children with Urinary Tract Infection (소아 요로 감염에서 99mTc DMSA 신스캔 평면영상에 추가된 SPECT 영상의 진단적 가치)

  • Yang Jea-Young;Yang Jung-An;Seo Jung-Wan;Lee Seung-Joo
    • Childhood Kidney Diseases
    • /
    • v.5 no.1
    • /
    • pp.22-29
    • /
    • 2001
  • Purpose : 99mTc DMSA renal scan have been widely used not only for tile evaluation of renal scars but also for the diagnosis of acute pyelonephritis. Recent studies have shown SPECT images have higher accuracy than the planar images with some controversy. We evaluated the availability of the SPECT images adding to planar images for the diagnosis of acute pyelonephritis(APN) and renal scar in children with urinary tract infection (UTI). Methods : 130 children with UTI (260 kidney units) and 22 follow-up children (44 kidney units) were included between January 1, 1997 and July 31, 1999 at Ewha University Mokdong Hospital. Planar Anterior and posterior images and SPECT axial and coronal images of 99mTc DMSA renal scan were obtained with Starcam 4000-i U.S.A. GE at 3 hours after 99mTc DMSA I.V. injection. The data were analyzed by Chi square test after Yates's correction. Results : The detection rate of the acute pyelonephritis by SPECT images was 12.3$\%$ higher than that of planar images ($47.7\%\;vs\;35.4\%$) by the patient and 6.9$\%$ higher also ($31.9\%\;vs\;25.4\%$) by the kidney unit. 18 kidney units with negative planar images had focal defect in 10 kidney units (3.8$\%$) and multifocal defect in 8 kidney units (3.1$\%$) on SPECT images, but 1 kidney unit with positive planar image had negative SPECT image. SPECT images were superior to tile planar images in 17.3$\%$. identical in 82.3$\%$ and inferior in 0.4$\%$ to planar image. The detection rate of tile renal scars by SPECT images was 13.7$\%$ higher than planar images by the patient ($68.2\%\;vs\;54.5\%$) and 6.8$\%$ higher also ($43.2\%\;vs\;36.4\%$) by the kidney unit. SPECT images were superior to the planar images in 17.3$\%$ and identical in 82.3$\%$ to planar image. Conclusion SPECT images had shown higher detection rate and better image than planar images for the diagnosis of the acute pyelonephritis and the evaluation of the renal scars. (J. Korean Soc Pediatr Nephrol 5 : 22- 9, 2001)

  • PDF

Detection of Multidrug Resistance Using Molecular Nuclear Technique (분자핵의학 기법을 이용한 다약제내성 진단)

  • Lee, Jae-Tae;Ahn, Byeong-Cheol
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.180-189
    • /
    • 2004
  • Although the outcome of cancer patients after cytotoxic chemotherapy is related diverse mechanisms, multidrug resistance (MDR) for chemotherapeutic drugs due to cellular P-glycoprotein (Pgp) or multidrug-resistance associated protein (MRP) is most important factor in the chemotherapy failure to cancer. A large number of pharmacologic compounds, including verapamil, quinidine, tamoxifen, cyclosporin A and quinolone derivatives have been reported to overcome MDR. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are available for the detection of Pgp and MRP-mediated transporter. $^{99m}Tc$-MIBI and other $^{99m}Tc$-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies for tumor imaging, and to visualize blockade of PgP-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with $^{11}C$ have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and $N-[^{11}C]acetyl-leukotriene$ E4 provides an opportunity to study MRP function non-invasively in vivo. SPECT and PET pharmaceuticals have successfully used to evaluate pharmacologic effects of MDR modulators. Imaging of MDR and reversal of MDR with bioluminescence in a living animal is also evaluated for future clinical trial. We have described recent advances in molecular imaging of MDR and reviewed recent publications regarding feasibility of SPECT and PET imaging to study the functionality of MDR transporters in vivo.

The Role of Camera-Based Coincidence Positron Emission Tomography in Nodal Staging of Non-Small Cell Lung Cancer (비소세포폐암의 림프절 병기 결정에서 Coincidence PET의 역할)

  • Lee, Sun-Min;Choi, Young-Hwa;Oh, Yoon-Jung;Cheong, Seong-Cheoll;Park, Kwang-Joo;Hwang, Sung-Chul;Lee, Yi-Hyeong;Park, Chan-H;Hahn, Myung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.5
    • /
    • pp.642-649
    • /
    • 1999
  • Background: It is very important to determine an accurate staging of the non-small cell lung cancer(NSCLC) for an assessment of operability and it's prognosis. However, it is difficult to evaluate tumor involvement of mediastinal lymph nodes accurately utilizing noninvasive imaging modalities. PET is one of the sensitive and specific imaging modality. Unfortunately PET is limited use because of prohibitive cost involved with it's operation. Recently hybrid SPECT/PET(single photon emission computed tomography/positron emission tomography) camera based PET imaging was introduced with relatively low cost. We evaluated the usefulness of coincidence detection(CoDe) PET in the detection of metastasis to the mediastinal lymph nodes in patients with NSCLC. Methods: Twenty one patients with NSCLC were evaluated by CT or MRI and they were considered operable. CoDe PET was performed in all 21 patients prior to surgery. Tomographic slices of axial, coronal and sagittal planes were visually analysed. At surgery, mediastinal lymph nodes were removed and histological diagnosis was performed. CoDe PET findings were correlated with histological findings. Results: Twenty of 21 primary tumor masses were detected by the CoDe PET. Thirteen of 21 patients was correctly diagnosed mediastinal lymph node metastasis by the CoDe PET. Pathological N0 was 14 cases and the specificity of N0 of CoDe PET was 64.3%. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy of N1 node was 83.3%, 73.3%, 55.6%, 91.7%, and 76.2% respectively. Sensitivity, specificity, positive predictive value, negative predictive value and accuracy of N2 node was 60.0%, 87.5%, 60.0%,87.5%, and 90.0% respectively. There were 3 false negative cases but the size of the 3 nodes were less than 1cm. The size of true positive nodes were 1.1cm, 1.0cm, 0.5cm respectively. There were 1 false positive among the 12 lymph nodes which were larger than 1cm. False positive cases consisted of 1 tuberculosis case, 1 pneumoconiosis case and 1 anthracosis case. Conclusion: CoDe PET has relatively high negative predictive value in the enlarged lymph node in staging of mediastinal nodes in patients with NSCLC. Therefore CoDe PET is useful in ruling out metastasis of enlarged N3 nodes. However, further study is needed including more number of patients in the future.

  • PDF