• 제목/요약/키워드: Single phase to ground fault

검색결과 76건 처리시간 0.031초

Ungrounded System Fault Section Detection Method by Comparison of Phase Angle of Zero-Sequence Current

  • Yang, Xia;Choi, Myeon-Song;Lee, Seung-Jae;Lim, Il-Hyung;Lim, Seong-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.484-490
    • /
    • 2008
  • In this paper, an integrated fault section detection and isolation strategy is proposed based on the application of the Distribution Automation System(DAS) utilizing advanced IT and communication technologies. The Feeder Remote Terminal Unit(FRTU) has been widely used to collect data in the Korean distribution system. The achieved data is adopted in this method for detecting multiple fault types. Especially in the case of single phase-to-ground fault, the fault section is detected by comparison of the zero-sequence current phase angle. The test results have verified the effectiveness of the proposed method in a radial distribution system through extensive simulations in Matlab/Simulink. Furthermore, a communication-based demo system identical to the simulation model has been developed, and it can be applied as an online monitoring and control program for fault section detection and isolation.

비접지 배전계통에서 영상전류 위상 비교에 의한 고장구간 검출 방법 (A Fault Section Detection Method for Ungrounded System Based on Phase Angle Comparison of Zero-Sequence Current)

  • 양하;최면송;이승재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.31-32
    • /
    • 2007
  • In this paper, a fault section detection method is proposed for ungrounded system in the case of a single line-to-ground fault. A conventional method is used for faulted feeder selection according to the angular relationship between zero-sequence currents of the feeders and zero-sequence voltage of the system. Fault section detection is based on the comparison of phase angle of zero-sequence current. Proposed method has been testified in a demo system by Matlab/Simulink simulations. Based on Distribution Automation System(DAS), Feeder Remote Terminal Unit(FRTU) is used to collect those necessary data, at present a demo system is under developing using Manufacturing Message Specification (MMS) in IEC61850 standard.

  • PDF

소프트웨어 Fault Tolerance를 이용한 고장점 표정 (Fault Location Identification Using Software Fault Tolerance Technique)

  • 김원하;장용원;한승수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권2호
    • /
    • pp.73-78
    • /
    • 2005
  • The management of technological systems will become increasingly complex. Safe and reliable software operation is a significant requirement for many types of system. So, with software fault tolerance, we want to prevent failures by tolerating faults whose occurrences are known when errors are detected. This paper presents a fault location algorithm for single-phase-to-ground faults on the teed circuit of a parallel transmission line using software fault tolerance technique. To find the fault location of transmission line, we have to solve the 3rd order transmission line equation. A significant improvement in the identification of the fault location was accomplished using the N-Version Programming (NVP) design paradigm. The delivered new algorithm has been tested with the simulation data obtained from the versatile EMTP simulator.

EMTP-RV를 이용한 2차 아크 모델링 (Modelling of Secondary Arc Using EMTP-RV)

  • 오윤식;강성범;서훈철;김철환
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.937-943
    • /
    • 2012
  • Most of faults occurred in transmission lines are single-phase to ground faults and transient faults. Single-phase auto reclosing is an appropriate scheme to maintain the system stability and restore the system effectively when those faults are occurred. In single-phase auto reclosing scheme, the secondary arc is generated after faulted phase is tripped to eliminate the fault and it is sustained by the capacitive and inductive coupling to the healthy phases. It is important to reclose the faulted phase after fully extinction of secondary arc because of the damage applied to system. Therefore, it is necessary to research on the detection of secondary arc extinction to ensure high success rate of reclosing. In this step, firstly, the accurate modelling of secondary arc should be performed. In this paper, the modelling of secondary arc is performed by using EMTP-RV and the simulation results show that the implemented model is correct and effective.

154 kV 변전소 주변압기의 용량 및 운전조건이 22.9 kV 배전계통의 고장전류에 미치는 영향 (An Investigation on the Fault Currents in 22.9 kV Distribution System Due to the Increased Capacity and Operating Conditions of Power Transformers in 154 kV Substation)

  • 조성수;한상옥
    • 전기학회논문지P
    • /
    • 제57권3호
    • /
    • pp.302-310
    • /
    • 2008
  • In order to evaluate the nominal rating of breakers in distribution system due to the increased capacity and operating conditions of power transformers in 154 kV substation, the fault currents in distribution system were calculated by the conventional method and simulations of PSCAD/EMTDC program. Consequently, under the condition of the parallel operation of transformers, the fault currents exceed the nominal current of the breakers in some areas. Without NGR at the secondary neutral of the transformer, the current of single line-to-ground fault was bigger than that of 3-phase fault. Therefore, the results clearly show that the measures to limit the fault currents in distribution system are needed when the increased capacity of power transformers is introduced into 154 kV substation.

고온 초전도 한류기가 설치된 전력 시스템의 안정도 해석 (Stability Analysis of Power System Instal1ed Superconducting Fault Currnt Limiter)

  • 이승제;이찬주;이창열;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.346-348
    • /
    • 1998
  • The stability of Power system installed Hi-Tc Superconducting Fault Current Limiter(SFCL) is analyzed as a process of developing SFCL. In interpretation, simple mimic system(only one motor) is assumed and then the circuit with SFCL in system is solved. In case the SFCL is installed in Power system, it protected synchronization more effectively both in symmetrical 3-phase fault and single phase line to ground fault.

  • PDF

A Study on the Gustafson-Kessel Clustering Algorithm in Power System Fault Identification

  • Abdullah, Amalina;Banmongkol, Channarong;Hoonchareon, Naebboon;Hidaka, Kunihiko
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1798-1804
    • /
    • 2017
  • This paper presents an approach of the Gustafson-Kessel (GK) clustering algorithm's performance in fault identification on power transmission lines. The clustering algorithm is incorporated in a scheme that uses hybrid intelligent technique to combine artificial neural network and a fuzzy inference system, known as adaptive neuro-fuzzy inference system (ANFIS). The scheme is used to identify the type of fault that occurs on a power transmission line, either single line to ground, double line, double line to ground or three phase. The scheme is also capable an analyzing the fault location without information on line parameters. The range of error estimation is within 0.10 to 0.85 relative to five values of fault resistances. This paper also presents the performance of the GK clustering algorithm compared to fuzzy clustering means (FCM), which is particularly implemented in structuring a data. Results show that the GK algorithm may be implemented in fault identification on power system transmission and performs better than FCM.

아크지락사고에 대한 사고 판별 및 적응 재폐로 기법 (Identification of Arcing Fault and Development of An Adaptive Reclosing Technique about Arcing Ground Fault)

  • 김현홍;추성호;채명석;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.354-356
    • /
    • 2006
  • This paper presents a new one-terminal numerical algorithm for fault location estimation and for faults recognition. The proposed algorithm are derived for the case of most frequent single-phase line to ground fault in the time domain. The arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent of transient. In this paper the algorithm uses a very short data window and enables fast fault detection and classification for real-time transmission line protection. To test the validity of the proposed algorithm the Electro-Magnetic Transient Program(EMTP/ATP) is used.

  • PDF

제작소가 상이한 단상 주변압기 병행 운전시 불평형전압의 검토 (The Calculation of Unbalanced Voltage on the tertiary bus of a single phase auto transformer in case of Parallel Operation with Different Manufacturer)

  • 심응보;우정욱;곽주식;조성훈;허용호;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.458-460
    • /
    • 2001
  • This paper described the unbalanced voltage on the tertiary bus of a single Phase auto transformer in the case of parallel operation with different manufacturer at each Phase. The unbalanced capacitances between primary to secondary winding, secondary to tertiary winding and primary to tertiary winding makes unbalanced bus voltage in the tertiary bus side. The unbalanced voltage let the surge arrester to operate in the power frequency range, and it causes the arrester to burn out. The failure of the arrester at one phase makes line to ground fault, which lead to the surge arrester failure of the other two phase on the tertiary bus.

  • PDF

배전선로 고장에 의한 Voltage Sag의 특성 해석 (Characteristic Analysis of Voltage Sags Due to Faulted Distribution Lines)

  • 김성덕
    • 조명전기설비학회논문지
    • /
    • 제16권1호
    • /
    • pp.76-84
    • /
    • 2002
  • 송전선과 배전선의 고장에 의한 voltage sag는 산업 수용가와 전력회사에 당면한 가장 중요한 전력품질(power quality) 문제들 중 하나가 되었다. voltage sag는 일반적으로 진폭과 지속시간 특성으로 기술되지만 voltage sag 현상을 규명하여 그 대책을 찾는데는 위상변위 특성을 반드시 고려해야 한다. 이 논문에서는 3상지락, 단선지락, 및 선간단락 사고가 발생하였을 경우에, 고장임피던스의 변화에 의한 voltage sag를 symmetrical components 해석을 이용하여 특성해석을 하였다. 이 때, voltage sag와 이들이 진폭과 위상에 미치는 효과를 고찰하였다. 3상지락과 같은 평형 고장은 모든 상에서 전압과 전류가 동일한 값으로 변화되고 또한 영상성분들은 영이 되었다. 그렇지만, 단선지락과 선간단락 고장과 같은 불평형 고장으로 인한 voltage sag는 진폭과 위상이 각 상마다 다르게 변화되었다. 해석결과를 확인하기 위하여 전력회로 모델들을 토대로 시뮬레이션을 수행하고 그 결과들도 검토되었다.