• Title/Summary/Keyword: Single phase

Search Result 5,349, Processing Time 0.032 seconds

Reduction of DC-Link Capacitance in Single-Phase Non-Isolated Onboard Battery Chargers

  • Nguyen, Hoang Vu;Lee, Sangmin;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.394-402
    • /
    • 2019
  • This paper proposes a single-phase non-isolated onboard battery charger (OBC) for electric vehicles (EVs) that only uses small film capacitors at the DC-link of the AC-DC converter. In the proposed charger, an isolated DC-DC converter for low-voltage batteries is used as an active power decoupling (APD) circuit to absorb the ripple power when a high-voltage (HV) battery is charged. As a result, the DC-link capacitance in the AC-DC converter of the HV charging circuit can be significantly reduced without requiring any additional devices. In addition, some of the components of the proposed circuit are shared in common for the different operating modes among the AC-DC converter, LV charging circuit and active power filter. Therefore, the cost and volume of the onboard battery charger can be reduced. The effectiveness of the proposed topology has been verified by the simulation and experimental results.

Analysis of Quench Generation in Fault Types According to Inductance Variation in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (삼상일체화된 자속구속형 고온초전도 전류제한기의 인덕턴스 변화에 따른 사고유형별 퀜치발생 분석)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.165-166
    • /
    • 2005
  • In this paper, we investigated the quench generation of HTSC elements in fault types according to inductance variation in the integrated three-phase flux-lock type SFCL. The integrated three-phase flux-lock type SFCL was the upgrade version of the single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is operated under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single-phase among three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases quench irrespective of the fault type, which reduces the current of fault phase as well as the current of sound phase. It was observed that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

A Control Strategy Based on Small Signal Model for Three-Phase to Single-Phase Matrix Converters

  • Chen, Si;Ge, Hongjuan;Zhang, Wenbin;Lu, Song
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1456-1467
    • /
    • 2015
  • This paper presents a novel close-loop control scheme based on small signal modeling and weighted composite voltage feedback for a three-phase input and single-phase output Matrix Converter (3-1MC). A small non-polar capacitor is employed as the decoupling unit. The composite voltage weighted by the load voltage and the decoupling unit voltage is used as the feedback value for the voltage controller. Together with the current loop, the dual-loop control is implemented in the 3-1MC. In this paper, the weighted composite voltage expression is derived based on the sinusoidal pulse-width modulation (SPWM) strategy. The switch functions of the 3-1MC are deduced, and the average signal model and small signal model are built. Furthermore, the stability and dynamic performance of the 3-1MC are studied, and simulation and experiment studies are executed. The results show that the control method is effective and feasible. They also show that the design is reasonable and that the operating performance of the 3-1MC is good.

An implementation of the hybrid SoC for multi-channel single tone phase detection (다채널 단일톤 신호의 위상검출을 위한 Hybrid SoC 구현)

  • Lee, Wan-Gyu;Kim, Byoung-Il;Chang, Tae-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.388-390
    • /
    • 2006
  • This paper presents a hybrid SoC design for phase detection of single tone signal. The designed hybrid SoC is composed of three functional blocks, i.e., an analog to digital converter module, a phase detection module and a controller module. A design of the controller module is based on a 16-bit RISC architecture. An I/O interface and an LCD control interface for transmission and display of phase measurement values are included in the design of the controller module. A design of the phase detector is based on a recursive sliding-DFT. The recursive architecture effectively reduces the gate numbers required in the implementation of the module. The ADC module includes a single-bit second-order sigma-delta modulator and a digital decimation filter. The decimation filter is designed to give 98dB of SNR for the ADC. The effective resolution of the ADC is enhanced to 98dB of SNR by the incorporation of a pre FIR filter, a 2-stage cascaded integrator- comb(CIC) filter and a 30-tab FIR filter in the decimation. The hybrid SoC is verified in FPGA and implemented in 0.35 CMOS Technology.

  • PDF

Preparation and Magnetic Properties of Acicular Ba-Ferrite Powder

  • Lee, Hak-Dong;Nam, Joong-Hee;Oh, Jae-Hee
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.40-43
    • /
    • 2000
  • Acicular $\alpha-FeOOH\; and\; Ba(OH)_2\cdot8H_2O$ are starting materials in this study. This paper presents the characteristics of the contents of citric acid and heating condition for preparing acicular barium ferrite powder. They control particle shape, crystalline phase, magnetic properties of acicular barium ferrite powder So the effects of the contents of citric acid and heating condition are studied. The experimental condition for starting materials were 800~1000$\circ C$ in firing and 0~40 wt% citric acid, respectively, Ba-ferrite particles fired at the range of 800 $\circ C$to 900 $\circ C$ were maintained as acicular particle shape, but there were mixed particles of acicular and round shape after fired at 950 $\circ C$. Ba-ferrite powder of the single phase was obtained in firing at 900~1000$\circ C$ and with 20 wt.% citric acid. There were unreacted phase of $\alpha-Fe_2O_3 \;and \; BaFe_2O_4$ phases as a second phase in case of sintering at below 850 $\circ C$. Acicular barium ferrite powder of single phase was also produced in firing at 900 $\circ C$ with 20 wt.% citric acid. The saturation magnetization of single phase of acicular $BaFe_12O_19$powder was about 51 emu/g and coercivity was about 4200 Oe.

  • PDF

Domain Structure and Phase Transformation of (001) Pb(Mg1/3Nb2/3)O3-x%PbTiO3 Single Crystals ((001) Pb(Mg1/3Nb2/3)O3-x%PbTiO3 단결정의 도메인 구조 및 상전이)

  • Lee, Eun-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.218-223
    • /
    • 2014
  • The domain structures, dielectric properties, and phase transformation of (001)-oriented $Pb(Mg_{1/3}Nb_{2/3})O_3-x%PbTiO_3$ (PMN-x%PT) crystals for x=20, 30, 35, and 40 mole% have been investigated. PMN-20%PT consists of polar nano-domains (PND) which do not self-assemble into macro-domain plates. PMN-30%PT consists of PNDs which begin to self-assemble into colonies along preferred {110} planes. PMN-35PT consists of miniature polar domains on the nm scale. PMN-40%PT consists of {001} oriented lamella domains on the mm scale that have internal nano-scale heterogeneities. The dielectric properties of poled (001) PMN-x%PT single crystals have been measured for orientations both parallel and perpendicular to the [001] poling direction. The results of the temperature dependence of the dielectric constant and mesh scans for the 30%PT sample demonstrate that the initial monoclinic phase changes to single domain tetragonal phase and to cubic phase with increasing temperature.

A Study on Current Ripple Reduction Due to Offset Error in SRF-PLL for Single-phase Grid-connected Inverters (단상 계통연계형 인버터의 SRF-PLL 옵셋 오차로 인한 전류 맥동 저감에 관한 연구)

  • Hwang, Seon-Hwan;Hwang, Young-Gi;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.68-76
    • /
    • 2014
  • This paper presents an offset error compensation algorithm for the accurate phase angle of the grid voltage in single-phase grid-connected inverters. The offset error generated from the grid voltage measurement process cause the fundamental harmonic component with grid frequency in the synchronous reference frame phase lock loop (PLL). As a result, the grid angle is distorted and the power quality in power systems is degraded. In addition, the dq-axis currents in the synchronous reference frame and phase current have the dc component, first and second order ripples compared with the grid frequency under the distorted grid angle. In this paper, the effects of the offset and scaling errors are analyzed based on the synchronous reference frame PLL. Particularly, the offset error can be estimated from the integrator output of the synchronous reference frame PLL and compensated by using proportional-integral controller. Moreover, the RMS (Root Mean Square) function is proposed to detect the offset error component. The effectiveness of the proposed algorithm is verified through simulation and experiment results.

Current Control of a Single-phase PWM Converter under the Distorted Source Voltage and Frequency Condition (전원 전압 왜곡과 주파수 변동 시 단상 PWM 컨버터의 전류 제어)

  • Ahn, Chang-Heon;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.356-362
    • /
    • 2015
  • This paper presents a current control strategy in the synchronous reference frame for a single-phase PWM converter, which ensures sinusoidal input current control under the distorted source voltage and frequency condition. Given that the distorted source voltage distorts the phase angle for PWM converter control, the input current contains the same harmonics as the source voltage. Aside from the distorted voltage, the variation in source frequency reduces the performance of input current control. To achieve sinusoidal input current control under the distorted source voltage and frequency condition, this paper proposes a compensation strategy of current reference with the distortion component extracted from the phase angle and a detection strategy of frequency variation from the output of a synchronous reference frame phase-lock loop. The experimental results confirm the validity of the proposed method under the distorted source voltage and frequency condition.

A Comparative Study on Output of Four Type Diagnostic X-ray Equipments (정류방식에 따른 진단용 X-선 장치의 출력비교)

  • Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.34-43
    • /
    • 1997
  • There are 4 types of equipment in diagnostic radiography. These are single phase, three phase, inverter type and condenser type X-ray generators. It is very confusing to make an adequate exposure factor and to know the usage of different type of X-ray generators. In this experiment, I explored a comparative study of outputs in 4 different type of X-ray units. I expect that this experiment could be helpful for manufacturer to make both the X-ray equipment better, In terms of Ideal exposure factors, thereby reducing the patient dose. Experimental results are as follow : 1) X-ray output The ratio of X-ray output of single, three phase and inverter type of X-ray generator was 1 : 1.6 : 2 without absorber and 1 : 2 : 2.6 with 20 mm aluminium absorber. 2) Beam quality The X-ray beam quality of single phase generator was proved to be softer than three phase and inverter type of generators by 0.4 mmAL and 0.55 mmAl HVL respectively. 3) Reproducibility Linearity of X-ray output Retroducibility of X-ray output met the regulation below CV 0.05 and linearity also met the regulation below 0.1 in 4 types of diagnostic X-ray generators. 4) The comparison of incident dose Three phase X-ray generator was 20% higher than two other X-ray generators in radiation dose to make same film density.

  • PDF

Heat Transfer and Pressure Drop Characteristics of Secondary Refrigerants Applying to Indirect Refrigeration System (간접 냉동 시스템용 2차 냉매의 열전달과 압력강하 특성)

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Jo, Hwan;Yi, Wen-Bin;Jeon, Min-Ju
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.45-50
    • /
    • 2013
  • This paper presents the comparison of heat transfer and pressure drop of various secondary refrigerants (single-phase and two-phase) in the indirect refrigeration system. The main results were summarized as follows: In case of heat transfer, it is useful to use secondary refrigerants in low evaporating temperature region and the heat transfer coefficient of single-phase is larger than two-phase secondary refrigerants. In case of pressure drop, it is useful to use secondary refrigerants in high evaporating temperature region and the pressure drop of two-phase is smaller than single-phase secondary refrigerant. Also, $CO_2$ is the best useful because pressure drop of $CO_2$ among the secondary refrigerants is the smallest.