• Title/Summary/Keyword: Single molecules

Search Result 495, Processing Time 0.035 seconds

Single-molecule fluorescence in situ hybridization: Quantitative imaging of single RNA molecules

  • Kwon, Sunjong
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.65-72
    • /
    • 2013
  • In situ detection of RNAs is becoming increasingly important for analysis of gene expression within and between intact cells in tissues. International genomics efforts are now cataloging patterns of RNA transcription that play roles in cell function, differentiation, and disease formation, and they are demon-strating the importance of coding and noncoding RNA transcripts in these processes. However, these techniques typically provide ensemble averages of transcription across many cells. In situ hybridization-based analysis methods complement these studies by providing information about how expression levels change between cells within normal and diseased tissues, and they provide information about the localization of transcripts within cells, which is important in understanding mechanisms of gene regulation. Multi-color, single-molecule fluorescence in situ hybridization (smFISH) is particularly useful since it enables analysis of several different transcripts simultaneously. Combining smFISH with immunofluorescent protein detection provides additional information about the association between transcription level, cellular localization, and protein expression in individual cells.

Studying confined polymers using single-molecule DNA experiments

  • Hsieh, Chih-Chen;Doyle, Patrick S.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.127-142
    • /
    • 2008
  • The development of fluorescence microscopy of single-molecule DNA in the last decade has fostered a bold jump in the understanding of polymer physics. With the recent advance of nanotechnology, devices with well-defined dimensions that are smaller than typical DNA molecules can be readily manufactured. The combination of these techniques has provided an unprecedented opportunity for researchers to examine confined polymer behavior, a topic far less understood than its counterpart. Here, we review the progress reported in recent studies that investigate confined polymer dynamics by means of single-molecule DNA experiments.

Fabrication of Large-Scale Single-Crystal Organic Nanowire Arrays for High-Integrated Flexible Electronics

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.266.1-266.1
    • /
    • 2013
  • Large-scale single-crystal organic nanowire arrays were generated using a direct printing method (liquidbridge- mediated nanotransfer molding) that enables the simultaneous synthesis, alignment and patterning of nanowires from molecular ink solutions. Using this method, single-crystal organic nanowires can easily be synthesized by self-assembly and crystallization of organic molecules within the nanoscale channels of molds, and these nanowires can then be directly transferred to specific positions on substrates to generate nanowire arrays by a direct printing process. Repeated application of the direct printing process can be used to produce organic nanowire-integrated electronics with two- or three-dimensional complex structures on large-area flexible substrates. This efficient manufacturing method is used to fabricate all-organic nanowire field-effect transistors that are integrated into device arrays and inverters on flexible plastic substrates.

  • PDF

Characterization of the Surface Contribution to Fluorescence Correlation Spectroscopy Measurements

  • Chowdhury, Salina A.;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.583-589
    • /
    • 2011
  • Fluorescence correlation spectroscopy (FCS) is a sophisticated and an accurate analytical technique used to study the diffusion of molecules in a solution at the single-molecule level. FCS is strongly affected by many factors such as the stability of the excitation power, photochemical processes, mismatch between the refractive indices, and variations in the cover glass thickness. We have studied FCS near the surface of a cover glass by using rhodamine 123 as a fluorescent probe and have observed that the surface has a strong influence on the measurements. The temporal autocorrelation of FCS decays with two characteristic times when the confocal detection volume is positioned near the surface of the cover glass. As the position of the detection volume is moved away from the surface, the FCS autocorrelation becomes one-component decaying; the characteristic time of the decay is the same as the faster-decaying component in the FCS autocorrelation near the surface. This observation suggests that the faster component can be attributed to the free diffusion of the probe molecules in the solution, while the slow component has its origin from the interaction between the probe molecules and the surface. We have characterized the surface contribution to the FCS measurements near the surface by changing the position of the detection volume relative to the surface. The influence of the surface on the diffusion of the probe molecules was monitored by changing the chemical properties of the surface. The surface contribution to the temporal autocorrelation of the FCS strongly depends on the chemical nature of the surface. The hydrophobicity of the surface is a major factor determining the surface influence on the free diffusion of the probe molecules near the surface.

Non-volatile Molecular Memory using Nano-interfaced Organic Molecules in the Organic Field Effect Transistor

  • Lee, Hyo-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.31-32
    • /
    • 2010
  • In our previous reports [1-3], electron transport for the switching and memory devices using alkyl thiol-tethered Ru-terpyridine complex compounds with metal-insulator-metal crossbar structure has been presented. On the other hand, among organic memory devices, a memory based on the OFET is attractive because of its nondestructive readout and single transistor applications. Several attempts at nonvolatile organic memories involve electrets, which are chargeable dielectrics. However, these devices still do not sufficiently satisfy the criteria demanded in order to compete with other types of memory devices, and the electrets are generally limited to polymer materials. Until now, there is no report on nonvolatile organic electrets using nano-interfaced organic monomer layer as a dielectric material even though the use of organic monomer materials become important for the development of molecularly interfaced memory and logic elements. Furthermore, to increase a retention time for the nonvolatile organic memory device as well as to understand an intrinsic memory property, a molecular design of the organic materials is also getting important issue. In this presentation, we report on the OFET memory device built on a silicon wafer and based on films of pentacene and a SiO2 gate insulator that are separated by organic molecules which act as a gate dielectric. We proposed push-pull organic molecules (PPOM) containing triarylamine asan electron donating group (EDG), thiophene as a spacer, and malononitrile as an electron withdrawing group (EWG). The PPOM were designed to control charge transport by differences of the dihedral angles induced by a steric hindrance effect of side chainswithin the molecules. Therefore, we expect that these PPOM with potential energy barrier can save the charges which are transported to the nano-interface between the semiconductor and organic molecules used as the dielectrics. Finally, we also expect that the charges can be contributed to the memory capacity of the memory OFET device.[4]

  • PDF

Single-Cell Toolkits Opening a New Era for Cell Engineering

  • Lee, Sean;Kim, Jireh;Park, Jong-Eun
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.127-135
    • /
    • 2021
  • Since the introduction of RNA sequencing (RNA-seq) as a high-throughput mRNA expression analysis tool, this procedure has been increasingly implemented to identify cell-level transcriptome changes in a myriad of model systems. However, early methods processed cell samples in bulk, and therefore the unique transcriptomic patterns of individual cells would be lost due to data averaging. Nonetheless, the recent and continuous development of new single-cell RNA sequencing (scRNA-seq) toolkits has enabled researchers to compare transcriptomes at a single-cell resolution, thus facilitating the analysis of individual cellular features and a deeper understanding of cellular functions. Nonetheless, the rapid evolution of high throughput single-cell "omics" tools has created the need for effective hypothesis verification strategies. Particularly, this issue could be addressed by coupling cell engineering techniques with single-cell sequencing. This approach has been successfully employed to gain further insights into disease pathogenesis and the dynamics of differentiation trajectories. Therefore, this review will discuss the current status of cell engineering toolkits and their contributions to single-cell and genome-wide data collection and analyses.

Self-Assembly of Pentacene Molecules on Epitaxial Graphene

  • Jung, Woo-Sung;Lee, Jun-Hae;Ahn, Sung-Joon;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.230-230
    • /
    • 2012
  • Graphene have showed promising performance as electrodes of organic devices such as organic transistors, light-emitting diodes, and photovoltaic solar cells. In particular, among various organic materials of graphene-based organic devices, pentacene has been regarded as one of the promising organic material because of its high mobility, chemical stability. In the bottom-contact device configuration generally used as graphene based pentacene devices, the morphology of the organic semiconductors at the interface between a channel and electrode is crucial to efficient charge transport from the electrode to the channel. For the high quality morphology, understanding of initial stages of pentacene growth is essential. In this study, we investigate self-assembly of pentacene molecules on graphene formed on a 6H-SiC (0001) substrate by scanning tunneling microscopy. At sub-monolayer coverage, adsorption of pentacene molecules on epitaxial graphene is affected by $6{\times}6$ pattern originates from the underlying buffer layer. And the orientation of pentacene in the ordered structure is aligned with the zigzag direction of the edge structure of single layer graphene. As coverage increased, intermolecular interactions become stronger than molecule-substrate interaction. As a result, herringbone structures the consequence of higher intermolecular interaction are observed.

  • PDF

Development of Selective Butyrylcholinesterase Inhibitors Using (R)-Lipoic Acid-Polyphenol Hybrid Molecules

  • Woo, Yeun-Ji;Lee, Bo-Hyun;Yeun, Go-Heum;Kim, Hyun-Ju;Ko, Jang-Myoun;Won, Moo-Ho;Lee, Bong-Ho;Park, Jeong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2997-3002
    • /
    • 2011
  • A series of hybrid molecules between (R)-lipoic acid (ALA) and the acetylated or methylated polyphenol compounds were synthesized and their in vitro cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)] inhibition activities were checked. The $IC_{50}$ values of all hybrid molecules for a BuChE inhibition were lower than those of the single parent compounds. Specifically, ALA-acetyl protected caffeic acid (11, ALA-AcCA) was shown as an effective inhibitor of BuChE ($IC_{50}=0.5{\pm}0.2\;{\mu}M$) and also had a great selectivity for BuChE over AChE (more than 800 fold). Inhibition kinetic study indicated that 11 is a mixed inhibition type. Its binding affinity ($K_i$) value to BuChE is $1.52{\pm}0.18\;{\mu}M$.

Controlling Spin State of Magnetic Molecules by Oxygen Binding Studied Using Scanning Tunneling Microscopy

  • Lee, Soon-hyeong;Chang, Yun Hee;Kim, Howon;Kim, Kyung Min;Kim, Yong-Hyun;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.145.1-145.1
    • /
    • 2016
  • Binding and unbinding between molecular oxygen and metallo-porphyrin is a key process for oxygen delivery in respiration. It can be also used to control spin state of magnetic metallo-porphyrin molecules. Controlling and sensing spin states of magnetic molecules in such reactions at the single molecule level is essential for spintronic molecular device applications. Here, we demonstrate that spin states of metallo-porphyrin on surfaces can be controlled over by binding and unbinding of oxygen molecule, and be sensed using scanning tunneling microscopy and spectroscopy. Kondo localized state of metallo-porphyrin showed significant modification by the binding of oxygen molecule, implying that the spin state was changed. Our density functional theory calculation results explain the observations with the hybridization of unpaired spins in d and ${\pi}^*$ orbitals of metallo-porphyrin and oxygen, respectively. Our study opens up ways to control molecular spin state and Kondo effect by means of molecular binding and unbinding reactions on surfaces.

  • PDF

Interactive CO2 Adsorption on the BaO (100) Surface: A Density Functional Theory (DFT) Study

  • Kwon, Soon-Chul;Hwang, Jung-Bae;Lee, Han-Lim;Lee, Wang-Ro
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2219-2222
    • /
    • 2010
  • A density functional theory (DFT) study of $CO_2$ adsorption on barium oxide (BaO) adsorbents is conducted to understand the chemical activity of the oxygen site on the BaO (100) surface. This study evaluated the adsorption energies and geometries of a single $CO_2$ molecule and a pair of $CO_2$ molecules on the BaO (100) surface. A quantum calculation was performed to obtain information on the molecular structures and molecular reaction mechanisms; the results of the calculation indicated that $CO_2$ was adsorbed on BaO to form a stable surface carbonate with strong chemisorption. To study the interactive $CO_2$ adsorption on the BaO (100) surface, a pair of $CO_2$ molecules was bound to neighboring and distant oxygen sites. The interactive $CO_2$ adsorption on the BaO surface was found to slightly weaken the adsorption energy, owing to the interaction between $CO_2$ molecules.