DOI QR코드

DOI QR Code

Single-Cell Toolkits Opening a New Era for Cell Engineering

  • Lee, Sean (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Jireh (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Jong-Eun (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2020.12.31
  • Accepted : 2021.03.11
  • Published : 2021.03.31

Abstract

Since the introduction of RNA sequencing (RNA-seq) as a high-throughput mRNA expression analysis tool, this procedure has been increasingly implemented to identify cell-level transcriptome changes in a myriad of model systems. However, early methods processed cell samples in bulk, and therefore the unique transcriptomic patterns of individual cells would be lost due to data averaging. Nonetheless, the recent and continuous development of new single-cell RNA sequencing (scRNA-seq) toolkits has enabled researchers to compare transcriptomes at a single-cell resolution, thus facilitating the analysis of individual cellular features and a deeper understanding of cellular functions. Nonetheless, the rapid evolution of high throughput single-cell "omics" tools has created the need for effective hypothesis verification strategies. Particularly, this issue could be addressed by coupling cell engineering techniques with single-cell sequencing. This approach has been successfully employed to gain further insights into disease pathogenesis and the dynamics of differentiation trajectories. Therefore, this review will discuss the current status of cell engineering toolkits and their contributions to single-cell and genome-wide data collection and analyses.

Keywords

References

  1. Aarts, M., Georgilis, A., Beniazza, M., Beolchi, P., Banito, A., Carroll, T., Kulisic, M., Kaemena, D.F., Dharmalingam, G., Martin, N., et al. (2017). Coupling shRNA screens with single-cell RNA-seq identifies a dual role for mTOR in reprogramming-induced senescence. Genes Dev. 31, 2085-2098. https://doi.org/10.1101/gad.297796.117
  2. Adamson, B., Norman, T.M., Jost, M., Cho, M.Y., Nunez, J.K., Chen, Y., Villalta, J.E., Gilbert, L.A., Horlbeck, M.A., Hein, M.Y., et al. (2016). A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867-1882.e21. https://doi.org/10.1016/j.cell.2016.11.048
  3. Alemany, A., Florescu, M., Baron, C.S., Peterson-Maduro, J., and van Oudenaarden, A. (2018). Whole-organism clone tracing using single-cell sequencing. Nature 556, 108-112. https://doi.org/10.1038/nature25969
  4. Alles, J., Karaiskos, N., Praktiknjo, S.D., Grosswendt, S., Wahle, P., Ruffault, P.L., Ayoub, S., Schreyer, L., Boltengagen, A., Birchmeier, C., et al. (2017). Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol. 15, 44. https://doi.org/10.1186/s12915-017-0383-5
  5. Attar, M., Sharma, E., Li, S., Bryer, C., Cubitt, L., Broxholme, J., Lockstone, H., Kinchen, J., Simmons, A., Piazza, P., et al. (2018). A practical solution for preserving single cells for RNA sequencing. Sci. Rep. 8, 2151.
  6. Biddy, B.A., Kong, W., Kamimoto, K., Guo, C., Waye, S.E., Sun, T., and Morris, S.A. (2018). Single-cell mapping of lineage and identity in direct reprogramming. Nature 564, 219-224. https://doi.org/10.1038/s41586-018-0744-4
  7. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213-1218. https://doi.org/10.1038/nmeth.2688
  8. Buenrostro, J.D., Wu, B., Litzenburger, U.M., Ruff, D., Gonzales, M.L., Snyder, M.P., Chang, H.Y., and Greenleaf, W.J. (2015). Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486-490. https://doi.org/10.1038/nature14590
  9. Cao, J., O'Day, D.R., Pliner, H.A., Kingsley, P.D., Deng, M., Daza, R.M., Zager, M.A., Aldinger, K.A., Blecher-Gonen, R., Zhang, F., et al. (2020). A human cell atlas of fetal gene expression. Science 370, eaba7721. https://doi.org/10.1126/science.aba7721
  10. Cao, J., Packer, J.S., Ramani, V., Cusanovich, D.A., Huynh, C., Daza, R., Qiu, X., Lee, C., Furlan, S.N., Steemers, F.J., et al. (2017). Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661-667. https://doi.org/10.1126/science.aam8940
  11. Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F.J., et al. (2019). The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496-502. https://doi.org/10.1038/s41586-019-0969-x
  12. Chen, X., Miragaia, R.J., Natarajan, K.N., and Teichmann, S.A. (2018). A rapid and robust method for single cell chromatin accessibility profiling. Nat. Commun. 9, 5345.
  13. Cusanovich, D.A., Daza, R., Adey, A., Pliner, H.A., Christiansen, L., Gunderson, K.L., Steemers, F.J., Trapnell, C., and Shendure, J. (2015). Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910-914. https://doi.org/10.1126/science.aab1601
  14. Datlinger, P., Rendeiro, A.F., Schmidl, C., Krausgruber, T., Traxler, P., Klughammer, J., Schuster, L.C., Kuchler, A., Alpar, D., and Bock, C. (2017). Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297-301. https://doi.org/10.1038/nmeth.4177
  15. Denisenko, E., Guo, B.B., Jones, M., Hou, R., de Kock, L., Lassmann, T., Poppe, D., Clement, O., Simmons, R.K., Lister, R., et al. (2020). Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130. https://doi.org/10.1186/s13059-020-02048-6
  16. Dixit, A., Parnas, O., Li, B., Chen, J., Fulco, C.P., Jerby-Arnon, L., Marjanovic, N.D., Dionne, D., Burks, T., Raychowdhury, R., et al. (2016). Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853-1866.e17. https://doi.org/10.1016/j.cell.2016.11.038
  17. Ernst, K.J., Okonechnikov, K., Bageritz, J., Mallm, J.P., Wittmann, A., MaaB, K.K., Leible, S., Boutros, M., Pfister, S.M., Zuckermann, M., et al. (2020). Establishment of a simplified preparation method for single-nucleus RNA-sequencing and its application to long-term frozen tumor tissues. bioRxiv, https://doi.org/10.1101/2020.10.23.351809
  18. Frangieh, C.J., Melms, J.C., Thakore, P.I., Geiger-Schuller, K.R., Ho, P., Luoma, A.M., Cleary, B., Malu, S., Cuoco, M.S., Zhao, M., et al. (2020). Multi-modal pooled Perturb-CITE-Seq screens in patient models define novel mechanisms of cancer immune evasion. bioRxiv, https://doi.org/10.1101/2020.09.01.267211
  19. Gaublomme, J.T., Li, B., McCabe, C., Knecht, A., Yang, Y., Drokhlyansky, E., Van Wittenberghe, N., Waldman, J., Dionne, D., Nguyen, L., et al. (2019). Nuclei multiplexing with barcoded antibodies for single-nucleus genomics. Nat. Commun. 10, 2907. https://doi.org/10.1038/s41467-019-10756-2
  20. Ginsberg, S.D. and Che, S. (2004). Combined histochemical staining, RNA amplification, regional, and single cell cDNA analysis within the hippocampus. Lab. Invest. 84, 952-962. https://doi.org/10.1038/labinvest.3700110
  21. Hashimshony, T., Wagner, F., Sher, N., and Yanai, I. (2012). CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2, 666-673. https://doi.org/10.1016/j.celrep.2012.08.003
  22. He, P., Williams, B.A., Trout, D., Marinov, G.K., Amrhein, H., Berghella, L., Goh, S.T., Plajzer-Frick, I., Afzal, V., Pennacchio, L.A., et al. (2020a). The changing mouse embryo transcriptome at whole tissue and single-cell resolution. Nature 583, 760-767. https://doi.org/10.1038/s41586-020-2536-x
  23. He, Z., Gerber, T., Maynard, A., Jain, A., Petri, R., Santel, M., Ly, K., Sidow, L., Sanchis-Calleja, F., Riesenberg, S., et al. (2020b). Lineage recording reveals dynamics of cerebral organoid regionalization. bioRxiv, https://doi.org/10.1101/2020.06.19.162032
  24. Heaton, H., Talman, A.M., Knights, A., Imaz, M., Gaffney, D.J., Durbin, R., Hemberg, M., and Lawniczak, M.K.N. (2020). Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes. Nat. Methods 17, 615-620. https://doi.org/10.1038/s41592-020-0820-1
  25. Islam, S., Kjallquist, U., Moliner, A., Zajac, P., Fan, J.B., Lonnerberg, P., and Linnarsson, S. (2011). Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21, 1160-1167. https://doi.org/10.1101/gr.110882.110
  26. Jaitin, D.A., Weiner, A., Yofe, I., Lara-Astiaso, D., Keren-Shaul, H., David, E., Salame, T.M., Tanay, A., van Oudenaarden, A., and Amit, I. (2016). Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883-1896.e15. https://doi.org/10.1016/j.cell.2016.11.039
  27. Jin, X., Simmons, S.K., Guo, A., Shetty, A.S., Ko, M., Nguyen, L., Jokhi, V., Robinson, E., Oyler, P., Curry, N., et al. (2020). In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes. Science 370, eaaz6063. https://doi.org/10.1126/science.aaz6063
  28. Joung, J., Konermann, S., Gootenberg, J.S., Abudayyeh, O.O., Platt, R.J., Brigham, M.D., Sanjana, N.E., and Zhang, F. (2017). Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828-863. https://doi.org/10.1038/nprot.2017.016
  29. Kalhor, R., Kalhor, K., Mejia, L., Leeper, K., Graveline, A., Mali, P., and Church, G.M. (2018). Developmental barcoding of whole mouse via homing CRISPR. Science 361, eaat9804. https://doi.org/10.1126/science.aat9804
  30. Kang, H.M., Subramaniam, M., Targ, S., Nguyen, M., Maliskova, L., McCarthy, E., Wan, E., Wong, S., Byrnes, L., Lanata, C.M., et al. (2018). Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89-94. https://doi.org/10.1038/nbt.4042
  31. Katzenelenbogen, Y., Sheban, F., Yalin, A., Yofe, I., Svetlichnyy, D., Jaitin, D.A., Bornstein, C., Moshe, A., Keren-Shaul, H., Cohen, M., et al. (2020). Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872-885.e19. https://doi.org/10.1016/j.cell.2020.06.032
  32. Kimmerling, R.J., Lee Szeto, G., Li, J.W., Genshaft, A.S., Kazer, S.W., Payer, K.R., de Riba Borrajo, J., Blainey, P.C., Irvine, D.J., Shalek, A.K., et al. (2016). A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages. Nat. Commun. 7, 10220. https://doi.org/10.1038/ncomms10220
  33. Kivioja, T., Vaharautio, A., Karlsson, K., Bonke, M., Enge, M., Linnarsson, S., and Taipale, J. (2011). Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72-74. https://doi.org/10.1038/nmeth.1778
  34. Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D.A., and Kirschner, M.W. (2015). Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201. https://doi.org/10.1016/j.cell.2015.04.044
  35. Kong, W., Biddy, B.A., Kamimoto, K., Amrute, J.M., Butka, E.G., and Morris, S.A. (2020). CellTagging: combinatorial indexing to simultaneously map lineage and identity at single-cell resolution. Nat. Protoc. 15, 750-772. https://doi.org/10.1038/s41596-019-0247-2
  36. Lee, J., Hyeon, D.Y., and Hwang, D. (2020). Single-cell multiomics: technologies and data analysis methods. Exp. Mol. Med. 52, 1428-1442. https://doi.org/10.1038/s12276-020-0420-2
  37. Luginbuhl, J., Kouno, T., Nakano, R., Chater, T.E., Sivaraman, D.M., Kishima, M., Roudnicky, F., Carninci, P., Plessy, C., and Shin, J.W. (2019). Decoding neuronal diversity by single-cell Convert-seq. bioRxiv, https://doi.org/10.1101/600239
  38. Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A.R., Kamitaki, N., Martersteck, E.M., et al. (2015). Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214. https://doi.org/10.1016/j.cell.2015.05.002
  39. Mayer, C., Jaglin, X.H., Cobbs, L.V., Bandler, R.C., Streicher, C., Cepko, C.L., Hippenmeyer, S., and Fishell, G. (2015). Clonally related forebrain interneurons disperse broadly across both functional areas and structural boundaries. Neuron 87, 989-998. https://doi.org/10.1016/j.neuron.2015.07.011
  40. McKenna, A., Findlay, G.M., Gagnon, J.A., Horwitz, M.S., Schier, A.F., and Shendure, J. (2016). Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907. https://doi.org/10.1126/science.aaf7907
  41. Mimitou, E.P., Cheng, A., Montalbano, A., Hao, S., Stoeckius, M., Legut, M., Roush, T., Herrera, A., Papalexi, E., Ouyang, Z., et al. (2019). Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409-412.
  42. Norman, T.M., Horlbeck, M.A., Replogle, J.M., Ge, A.Y., Xu, A., Jost, M., Gilbert, L.A., and Weissman, J.S. (2019). Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786-793. https://doi.org/10.1126/science.aax4438
  43. Panina, Y., Karagiannis, P., Kurtz, A., Stacey, G.N., and Fujibuchi, W. (2020). Human Cell Atlas and cell-type authentication for regenerative medicine. Exp. Mol. Med. 52, 1443-1451. https://doi.org/10.1038/s12276-020-0421-1
  44. Park, J.E., Jardine, L., Gottgens, B., Teichmann, S.A., and Haniffa, M. (2020). Prenatal development of human immunity. Science 368, 600-603. https://doi.org/10.1126/science.aaz9330
  45. Pierce, S.E., Granja, J.M., and Greenleaf, W.J. (2020). High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer. bioRxiv, https://doi.org/10.1101/2020.11.02.364265
  46. Pijuan-Sala, B., Wilson, N.K., Xia, J., Hou, X., Hannah, R.L., Kinston, S., Calero-Nieto, F.J., Poirion, O., Preissl, S., Liu, F., et al. (2020). Single-cell chromatin accessibility maps reveal regulatory programs driving early mouse organogenesis. Nat. Cell Biol. 22, 487-497. https://doi.org/10.1038/s41556-020-0489-9
  47. Raj, B., Gagnon, J.A., and Schier, A.F. (2018). Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT. Nat. Protoc. 13, 2685-2713. https://doi.org/10.1038/s41596-018-0058-x
  48. Ramskold, D., Luo, S., Wang, Y.C., Li, R., Deng, Q., Faridani, O.R., Daniels, G.A., Khrebtukova, I., Loring, J.F., Laurent, L.C., et al. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777-782. https://doi.org/10.1038/nbt.2282
  49. Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P., Carninci, P., Clatworthy, M., et al.; Human Cell Atlas Meeting Participants (2017). The Human Cell Atlas. Elife, 6, e27041. https://doi.org/10.7554/elife.27041
  50. Regev, A., Teichmann, S., Rozenblatt-Rosen, O., Stubbington, M., Ardlie, K., Amit, I., Arlotta, P., Bader, G., Benoist, C., Biton, M., et al.; Human Cell Atlas Organizing Committee (2018). arXiv, http://arxiv.org/abs/1810.05192
  51. Replogle, J.M., Norman, T.M., Xu, A., Hussmann, J.A., Chen, J., Cogan, J.Z., Meer, E.J., Terry, J.M., Riordan, D.P., Srinivas, N., et al. (2020). Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 38, 954-961. https://doi.org/10.1038/s41587-020-0470-y
  52. Rosenberg, A.B., Roco, C.M., Muscat, R.A., Kuchina, A., Sample, P., Yao, Z., Graybuck, L.T., Peeler, D.J., Mukherjee, S., Chen, W., et al. (2018). Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176-182. https://doi.org/10.1126/science.aam8999
  53. Rozenblatt-Rosen, O., Regev, A., Oberdoerffer, P., Nawy, T., Hupalowska, A., Rood, J.E., Ashenberg, O., Cerami, E., Coffey, R.J., Demir, E., et al.; Human Tumor Atlas Network (2020). The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236-249. https://doi.org/10.1016/j.cell.2020.03.053
  54. Rubin, A.J., Parker, K.R., Satpathy, A.T., Qi, Y., Wu, B., Ong, A.J., Mumbach, M.R., Ji, A.L., Kim, D.S., Cho, S.W., et al. (2019). Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. Cell 176, 361-376.e17. https://doi.org/10.1016/j.cell.2018.11.022
  55. Saliba, A.E., Westermann, A.J., Gorski, S.A., and Vogel, J. (2014). Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845-8860. https://doi.org/10.1093/nar/gku555
  56. Sanjana, N.E. (2017). Genome-scale CRISPR pooled screens. Anal. Biochem. 532, 95-99.
  57. Schraivogel, D., Gschwind, A.R., Milbank, J.H., Leonce, D.R., Jakob, P., Mathur, L., Korbel, J.O., Merten, C.A., Velten, L., and Steinmetz, L.M. (2020). Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat. Methods 17, 629-635. https://doi.org/10.1038/s41592-020-0837-5
  58. Sharma, S. and Petsalaki, E. (2018). Application of CRISPR-Cas9 based genome-wide screening approaches to study cellular signalling mechanisms. Int. J. Mol. Sci. 19, 933. https://doi.org/10.3390/ijms19040933
  59. Sims, D., Mendes-Pereira, A.M., Frankum, J., Burgess, D., Cerone, M.A., Lombardelli, C., Mitsopoulos, C., Hakas, J., Murugaesu, N., Isacke, C.M., et al. (2011). High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing. Genome Biol. 12, R104. https://doi.org/10.1186/gb-2011-12-10-r104
  60. Slyper, M., Porter, C.B.M., Ashenberg, O., Waldman, J., Drokhlyansky, E., Wakiro, I., Smillie, C., Smith-Rosario, G., Wu, J., Dionne, D., et al. (2020). A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat. Med. 26, 792-802. https://doi.org/10.1038/s41591-020-0844-1
  61. Spanjaard, B., Hu, B., Mitic, N., Olivares-Chauvet, P., Janjuha, S., Ninov, N., and Junker, J.P. (2018). Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 36, 469-473. https://doi.org/10.1038/nbt.4124
  62. Srivatsan, S.R., McFaline-Figueroa, J.L., Ramani, V., Saunders, L., Cao, J., Packer, J., Pliner, H.A., Jackson, D.L., Daza, R.M., Christiansen, L., et al. (2020). Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45-51. https://doi.org/10.1126/science.aax6234
  63. Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay, P.K., Swerdlow, H., Satija, R., and Smibert, P. (2017). Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865-868. https://doi.org/10.1038/nmeth.4380
  64. Stoeckius, M., Zheng, S., Houck-Loomis, B., Hao, S., Yeung, B.Z., Mauck, W.M., 3rd, Smibert, P., and Satija, R. (2018). Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224. https://doi.org/10.1186/s13059-018-1603-1
  65. Sungnak, W., Huang, N., Becavin, C., Berg, M.; HCA Lung Biological Network (2020). SARS-CoV-2 entry genes are most highly expressed in nasal goblet and ciliated cells within human airways. arXiv, https://www. ncbi.nlm.nih.gov/pubmed/32550242
  66. Svensson, V., Vento-Tormo, R., and Teichmann, S.A. (2018). Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599-604. https://doi.org/10.1038/nprot.2017.149
  67. Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., et al. (2009). mRNA-Seq wholetranscriptome analysis of a single cell. Nat. Methods 6, 377-382. https://doi.org/10.1038/nmeth.1315
  68. Thomsen, E.R., Mich, J.K., Yao, Z., Hodge, R.D., Doyle, A.M., Jang, S., Shehata, S.I., Nelson, A.M., Shapovalova, N.V., Levi, B.P., et al. (2016). Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat. Methods 13, 87-93. https://doi.org/10.1038/nmeth.3629
  69. Ursu, O., Neal, J.T., Shea, E., Thakore, P.I., Jerby-Arnon, L., Nguyen, L., Dionne, D., Diaz, C., Bauman, J., Mosaad, M.M., et al. (2020). Massively parallel phenotyping of variant impact in cancer with Perturb-seq reveals a shift in the spectrum of cell states induced by somatic mutations. bioRxiv, https://doi.org/10.1101/2020.11.16.383307
  70. Wagner, D.E. and Klein, A.M. (2020). Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410-427. https://doi.org/10.1038/s41576-020-0223-2
  71. Walsh, C. and Cepko, C.L. (1992). Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 255, 434-440. https://doi.org/10.1126/science.1734520
  72. Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F.D., and Klein, A.M. (2020). Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 367, eaaw3381. https://doi.org/10.1126/science.aaw3381
  73. Xie, S., Duan, J., Li, B., Zhou, P., and Hon, G.C. (2017). Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285-299.e5. https://doi.org/10.1016/j.molcel.2017.03.007
  74. Yang, L., Zhu, Y., Yu, H., Cheng, X., Chen, S., Chu, Y., Huang, H., Zhang, J., and Li, W. (2020). scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens. Genome Biol. 21, 19. https://doi.org/10.1186/s13059-020-1928-4
  75. Zhang, J.Y., Wang, X.M., Xing, X., Xu, Z., Zhang, C., Song, J.W., Fan, X., Xia, P., Fu, J.L., Wang, S.Y., et al. (2020). Single-cell landscape of immunological responses in patients with COVID-19. Nat. Immunol. 21, 1107-1118. https://doi.org/10.1038/s41590-020-0762-x
  76. Zilionis, R., Nainys, J., Veres, A., Savova, V., Zemmour, D., Klein, A.M., and Mazutis, L. (2017). Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12, 44-73. https://doi.org/10.1038/nprot.2016.154

Cited by

  1. Integrative Multi-Omics Approaches in Cancer Research: From Biological Networks to Clinical Subtypes vol.44, pp.7, 2021, https://doi.org/10.14348/molcells.2021.0042