• Title/Summary/Keyword: Single fracture

Search Result 654, Processing Time 0.024 seconds

Fracture Behavior of CIP Anchor in Cracked Concrete (균열 콘크리트 면에서의 CIP앵커의 파괴거동)

  • 김호섭;윤영수;윤영수;박성균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.169-174
    • /
    • 2001
  • This study concerns crack effect on concrete anchor system and prediction of tensile capacity, as governed by concrete cone failure, of single anchors located at center of concrete specimen. To Investigate crack effect three different types of crack such as crack width of 0.2mm and 0.5nm, crack depth of loom and 20cm, and crack location of center and biased point were simulated. The static tensile load was subjected to 7/8 in. CIP anchor embedded in concrete of strength 280kg/$cm^{2}$. Tested pullout capacity was compared to prediction value by each current design method (such as ACI 349-97, ACI 349 revision and CEB-FIP which is based on CC Method), In these comparison CC Method and ACI revision showed almost same value in uncracked concrete specimen, however in cracked concrete CC Method showed conservativeness. Therefore the design by ACI 349 revision is recommended for the safe and economic design.

  • PDF

An Experimental Study on the Flexural Fatigue Fracture Behavior of RC Slab of Widened Bridge (교량 확폭시 RC 상판 접합부의 휨 피로파괴거동에 관한 실험적 연구)

  • 박영훈;전준창;조병완;장동일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.13-18
    • /
    • 1994
  • Most widened bridges have been constructed by the joining-construction method that makes new and existing bridge structurally single structure. However, joing-construction method has several problems in design and construction viewpoint. Therefore, this study is conducted in order to investigate structural behavior of widened RC slab and traffic-induced vibration of existing bridge during placing and curing of new concrete by the prototype flexural fatigue test. From the results of this study, it is shown that stress-concentration and slip occur between concrete and reinforcing rod at joint section but the reduction of load carrying capacity and of fatigue strength is negligible according to the traffic-induced vibration as well as the difference of construction method. A reasonable construction method for the bridge widening which takes into account the effects of the traffic-induced vibration and S-N curve for the widened bridge are also proposed.

  • PDF

Effect of Residual Stress in Al5083 TIG Weld Region on Fatigue Crack Propagation Behavior (Al5083재 TIG용접부의 잔류응력이 피로균열전파거동에 미치는 효과)

  • Lee, Ouk-Sub;Park, Chan-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.943-951
    • /
    • 1999
  • The welded structure unnecessarily remains residual stress due to the very high heating of local region and lastly cooling. The residual stress sometimes causes fracture initiation of welded structures. In this paper, distribution and magnitude of tensile and compressive residual stresses in the TIG(Tungsten Inert Gas) welded aluminum alloy such as Al5083-H112 are measured by using the hole-drilling method. Furthermore, the effects of residual stresses in the TIG welded aluminum CCT(Center Crack Tension) and SEN(Single Edge Notched) Specimens on the fatigue crack propagation behavior are analyzed. The fatigue cracks initiated at residual stresses region are influnced by tensile and compressive residual stresses. However, the effects are found to be released fast for both cases according to the cyclic loads and extension of crack length.

A Study for Cutting Resistance of TiN Coated Tools (TiN 코팅 공구의 절삭저항에 관한 연구)

  • 김광래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.87-95
    • /
    • 2000
  • By using AIP(Arc Ion Plating) of a physical vapor deposition for the first time in Korea a ceramic tool whose surface is coated single layeredly with TiN is developed. In addition cutting resistance appearing in the process of finishing cut of hardened carbon tool steel STC3 is studied. The principal and radial components of cutting resistance in those cutting conditions appear to be the same or similar and the feed component is relatively small. The feed component is found to be in proportion to cutting width and the radial component in proportion to cutting thickness. Owing to coating the cutting resistance of a TiN coated ceramic tool increas-es compared with that of a general ceramic tool.

  • PDF

High performance epoxy nanocomposites with amine-functionalized graphenes

  • Park, Sol-Mon;Kim, Dae-Su
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.470-473
    • /
    • 2010
  • Graphene, consisting of a single layer of carbon in a two-dimensional lattice, has been emerging as a fascinating material with many unique physical, chemical and mechanical properties. In this study, graphenes were prepared by a chemical method. To develop high performance polymer nanocomposites reinforced by graphenes, adequate dispersion of the fillers and strong interfacial bonding between the fillers and the polymer matrix are essential. The purpose of this study was to examine the influence of introducing amine groups on the surfaces of graphenes. FT-IR spectroscopy, SEM were used to confirm the functionalization. Epoxy nanocomposites comprising the graphenes were prepared and their characteristics were investigated by DSC, DMA and TMA. Fracture surfaces of the nanocomposites were investigated by SEM. The functionalized graphenes induced strong interfacial bonding than the pristine graphenes and resulted in considerable improvements in the performance of the nanocomposites.

  • PDF

Single Fiber Composite(SFC) 시험법과 Acoustic Emission(AE)를 이용한 고분자 복합재료 계면전단강도 및 미세파손기구의 해석

  • 이준현;박종만;윤동진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.656-659
    • /
    • 1993
  • The failure phenomenon of Dual Basalt Fibers Reinforced Epoxy Composites(DFC) under tensile load was studied using acoustic emission(AE) technique. AE amplitude and AE energy were mainly associated with the internal microscopic failure mechanism of DFC specimen, such as fiber fracture, matrix cracking, and fiber/matrix debonding. Fiber failures in the DFC specimens were distinguishable by showing the highest AE energy amplitude. They were dependant on the fiber diameters. Matrix cracking was determined from the relatively lower AE amplitude and AE energy, whereas fiber/matrix debonding could not be successfully isolated. AE method, however, can be applicable to the fragmentation method for interfacial strength(IFSS) in DFC specimens with adjusting the threshold to isolate fiber breaks from matrix crack and debonding.

  • PDF

The effect of the surface defect from micro-hole for fatigue strength (피로강도에 대한 표면미소 결함의 영향)

  • 오환섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.51-56
    • /
    • 1989
  • This study was performed to investigate the effect of defect on fatigue strength under the stress of rotary bending. The specimens were made of low carbon steel having artificial microholes, namely, single micro-hole and two adjacent micro-holes as natural defects, and the effects of the diameter of hole and the distance between the holes on fatigue strength have been investigated. The obtained result can be summarized as follows: 1, The critical defect means the largest size of defect that does not affect fatigue limit, and correspondes to the size of defect leading to final fracture under fatigue limit of smooth specimen. The size of defect which has an effect on fatigue limit is larger than that of critical defect. 2, The defect larger than the critical defect affects fatigue strength for as a kind of size effect, and the physical meaning of size effect of defect is considered same as the one of notch effect.

  • PDF

Finite Element Ductile Failure Simulations of Tensile and Bend Bars made of API X65 Steels (API X65 강의 인장 및 굽힘 시편에 대한 유한요소 연성파괴 해석)

  • Oh, Chang-Kyun;Jin, Te-Eun;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1696-1701
    • /
    • 2007
  • This paper presents a micro-mechanical model of ductile fracture for the API X65 steel using the Gurson-Tvergaard-Needleman (GTN) model. Experimental tests and FE damage simulations using the GTN model are performed for smooth and notched tensile bars, from which the parameters in the GTN model are calibrated. As application, the developed GTN model is applied to simulate small-sized, single-edge-cracked tensile and bend bars, via three-dimensional FE damage analyses. Comparison of FE damage analysis results with experimental test data shows overall good agreements.

  • PDF

Estimation of Tool life by Simple & Multiple Linear Regression Analysis of $Si_3N_4$ Ceramic Cutting Tools (회귀분석에 의한 $Si_3N_4$세라믹 절삭공구의 공구수명 추정)

  • 안영진;권원태;김영욱
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.23-29
    • /
    • 2004
  • In this study, four kinds of $Si_3N_4$-based ceramic cutting tools with different sintering time were fabricated to investigate the relation among mechanical properties, grain size and tool life. They were used to turn gray cast iron at a cutting speed of 330m/min and depth of cut of 0.5mm and 1mm in dry, continuos cutting conditions. Multiple linear regression model was used to determine the relations among the mechanical property, grain size and the density. It was found that the combination of hardness and fracture toughness showed a good relation with tool life. It was also shown that hardness was the most important single element for the tool life.

Thermal flow intensity factor for non-homogeneous material subjected to unsteady thermal load (비정상 열 하중을 받는 이질재료의 열량 집중 계수 해석)

  • Kim, Gui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.26-34
    • /
    • 2008
  • This article provides a comprehensive treatment of cracks in non-homogeneous structural materials such as functionally graded materials (FGMs). It is assumed that the material properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces. By using laminated composite plate model to simulate the material non-homogeneity, we present an algorithm for solving the system based on Laplace transform and Fourier transform techniques. Unlike earlier studies that considered certain assumed property distributions and a single crack problem, the current investigation studies multiple crack problem in the FGMs with arbitrarily varying material properties. As a numerical illustration, transient thermal flow intensity factors for a metal-ceramic joint specimen with a functionally graded interlayer subjected to sudden heating on its boundary are presented. The results obtained demonstrate that the present model is an efficient tool in the fracture analysis of non-homogeneous material with properties varying in the thickness direction.

  • PDF