• Title/Summary/Keyword: Single fracture

Search Result 654, Processing Time 0.025 seconds

Mechanical Behavior of $Al_2O_3/Cr_2O_3-ZrO_2/HfO_2$ System ($Al_2O_3/Cr_2O_3-ZrO_2/HfO_2$ 계의 기계적 거동)

  • 신동우;오근호;이종근
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.42-52
    • /
    • 1985
  • Several $Al_2O_3$-based polycrystalline which had different dopant ratio in the range of 0.5mol% were prepared by doping pure $Cr_2O_3$ $HfO_2$. Single crystalline which had same composition with above polycrystalline were made by means of floating zone method. This study examined the role of each dopant for enhancing the mechanical properties of $Al_2O_3$-based Ceramics. Optical micrographs $({ imes}200)$ of $Al_2O_3-Cr_2O_3$ single crystal showing not only radial crack (rc) on the specimen surface but median crack(mc) and lateral crack(lc) under surface at the edge of indentation mark. Fracture toughness of Al2O3-based Ceramics was increased with $ZrO_2$ content. Alloying effect of $Cr_2O_3$ contributed to the hardness of $Al_2O_3$ based ceramics.

  • PDF

Reinforcing effect of Single Wall Carbon Nanotubes on Acrylic Fibers

  • Min, Byung G.;Sreekumar, T.V.;Kumar, Satish
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.11-12
    • /
    • 2003
  • The reinforcing effect of single wall carbon nanotubes (SWNTs) on polyacrylonitrile (PAN) fiber were investigated. The tensile fracture images of the composite fibers demonstrate that SWNTs are well dispersed in PAN matrix as bundles (ropes) ca. 20nm in thickness. It was found that SWNTs play a role not only to reinforce but also to toughen the PAN fiber by increasing breaking strain as well as modulus and strength of the fiebrs. The composite fibers exhibited improved dimensional stability at elevated temperature compared to the neat PAN fiber.

  • PDF

Fatigue crack propagation life evaluation of an autofrettaged thick-walled cylinder (자긴가공된 두꺼운 실린더의 피로균열 전파수명평가)

  • Lee, Song-In;Kim, Jin-Yong;Jeong, Se-Hui;Go, Seung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.321-329
    • /
    • 1998
  • To ensure the structural integrity of the autofrettaged thick-walled cylinder subjected to cyclic internal pressure loading, the fatigue crack propagation life of the cylinder was evaluated. Stress intensity factors of the external cracked cylinder due to internal pressure and autofrettage loadings were calculated using the finite element method. The fatigue crack propagation lives of the cylinder based on the fracture mechanics concepts were predicted and compared to the experimental fatigue lives evaluated from the C-shaped simulation specimens. There were good correlations between the predicted and experimental fatigue lives within a factor of 3 for the single and double grooved C-shaped simulation specimens. Predicted fatigue crack propagation lives of the double grooved cylinders were about 1.5-5 times longer than those of the single grooved cylinders depending on the levels of autofrettage.

Strength Evaluation of Adhesively Bonded Single-Lap Joints by Ultrasonic Signal Analysis (초음파신호해석을 이용한 단순겹치기 접착이음의 강도평가)

  • Oh Seung-Kyu;Jang Chul-Sub;Han Jun-Young;Lee Won
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.32-37
    • /
    • 2004
  • Application of bonding by adhesives can be found in many industries, particularly in advanced technological domains such as aeronautical and space, automobile and electronics industries. Periodic inspection with conventional ultrasonic NDE techniques is capable of indicating the presence and possible location of crack. Continuous ultrasonic attenuation monitoring has potential to supply information. This article discusses the use of pulse-echo ultrasonic testing for the inspection of adhesive bonds between metal sheets. The method is based on the measurement of the reflection coefficient at the metal/adhesive interface. By means of a control experiment it is shown that Quantitative Nondestructive Evaluation in Adhesive Joints are evaluated together with Ultrasonic Testing and Fracture Testing.

Dependence of electron and photon emission during abrasion by surface condition of magnesium oxide crystal

  • Hwang, Do-Jin;Kim, Jong-Min;Park, Eun-Hee;Kim, Myoung-Won
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • We measured the simultaneous, time-resolved spectra of photon emission, electron emission, and frictional force during the abrasion single crystal MgO with a diamond stylus in vacuum. phE and EE signal can be detected with millisecond resolution during the wear of a single crystal MgO substrate with a diamond stylus. The emissions and wear behavior are strong function of surface condition, load and stylus velocity. Measurement on annealed vs as-received material show that the luminescence is primarily due to deformation, and the electron emission is primarily due to fracture. These emissions provide insight into the processes responsible for catastrophic failure of ceramics in wear applications.

  • PDF

Experimental Study on the Blade Excitation Frequency for the Natural Frequence of Centrifugal Pump Piping Systems (원심펌프 배관계 진동에 영향을 주는 블레이드 가진주파수의 실험적 고찰)

  • 김윤제;신호길
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.335-341
    • /
    • 2001
  • Pressure pulsations generated by the blade-tongue interaction induce vibration of the piping systems and the structure connected to pumps, resulting in the severe noise and fatigue fracture. Experiments were made on the natural frequencies of liquid columns in piping systems with a single suction, single stage, centrifugal volute pump. Experimental results show that the natural frequencies of the liquid columns in the pump piping systems depend on the dimensions of the pipes and the impeller shapes, and are not affected substantially by the rate of discharge and the rotating speed of the pump.

  • PDF

Determination of Mode I Fracture Toughness of Fiber Reinforced Composites by the Elastic Work Factor (섬유강화 복합재의 $G_ {IC}$ 결정을 위한 일인자방법)

  • Lee, Gyeong-Yeop;Go, Seung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3491-3497
    • /
    • 1996
  • The work factor approach was applied to determine $G_ {IC}$ of fiber reinforced composites (AS4/3501) from a single unidirectional (0-deg) DCB specimen. Elastic work factors of DCB specimen for three different symmetrical staking sequences were derived from a simple bending theory and a finite element method. The results showed that elastic work factors calculated from both methods were comparable each other. In particular, the elastic work factor of DCB specimen with symmetrical stacking sequence is independent of stacking sequence. The $G_ {IC}$ determined from the work factor approach was compared with that determined by the compliance method. The results showed that the work factor approach and the compliance method produce comparable results of $G_ {IC}$. Thus, $G_ {IC}$ can be determined from a single DCB specimen using the work factor approach.

Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour

  • Jahangir, Hashem;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.877-889
    • /
    • 2020
  • This work features the outcomes of an empirical investigation into the characteristics of steel reinforced grout (SRG) composite - concrete interfaces. The parameters varied were loading rate, densities of steel fibres and types of load displacement responses or measurements (slip and machine grips). The following observations and results were derived from standard single-lap shear tests. Interfacial debonding of SRG - concrete joints is a function of both fracture of matrix along the bond interface and slippage of fibre. A change in the loading rate results in a variation in peak load (Pmax) and the correlative stress (σmax), slip and machine grips readings at measured peak load. Further analysis of load responses revealed that the behaviour of load responses is shaped by loading rate, fibre density as well as load response measurement variable. Notably, the out-of-plane displacement at peak load increased with increments in load rates and were independent of specimen fibre densities.

Effect of Strain Rate on Tensile Behavior of Hybrid Fiber Reinforced Cement-based Composites (하이브리드 섬유보강 시멘트복합체의 인장거동에 미치는 변형속도의 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.122-123
    • /
    • 2017
  • In this study, the tensile behavior of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite' s tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks

  • Dechaumphai, Pramote;Phongthanapanich, Sutthisak;Bhandhubanyong, Paritud
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.563-578
    • /
    • 2003
  • Delaunay triangulation is combined with an adaptive finite element method for analysis of two-dimensional crack propagation problems. The content includes detailed descriptions of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around the crack tips and large elements in the other regions. Three examples for predicting the stress intensity factors of a center cracked plate, a compact tension specimen, a single edge cracked plate under mixed-mode loading, and an example for simulating crack growth behavior in a single edge cracked plate with holes, are used to evaluate the effectiveness of the procedure. These examples demonstrate that the proposed procedure can improve solution accuracy as well as reduce total number of unknowns and computational time.