• 제목/요약/키워드: Single electron transistor

검색결과 45건 처리시간 0.033초

Single-Electron Pass-Transistor Logic with Multiple Tunnel Junctions and Its Hybrid Circuit with MOSFETs

  • Cho, Young-Kyun;Jeong, Yoon-Ha
    • ETRI Journal
    • /
    • 제26권6호
    • /
    • pp.669-672
    • /
    • 2004
  • To improve the operation error caused by the thermal fluctuation of electrons, we propose a novel single-electron pass-transistor logic circuit employing a multiple-tunnel junction (MTJ) scheme and modulate a parameters of an MTJ single-electron tunneling device (SETD) such as the number of tunnel junctions, tunnel resistance, and voltage gain. The operation of a 3-MTJ inverter circuit is simulated at 15 K with parameters $C_g=C_T=C_{clk}=1\;aF,\;R_T=5\;M{\Omega},\;V_{clk}=40\;mV$, and $V_{in}=20\;mV$. Using the SETD/MOSFET hybrid circuit, the charge state output of the proposed MTJ-SETD logic is successfully translated to the voltage state logic.

  • PDF

Dual Gate-Controlled SOI Single Electron Transistor: Fabrication and Coulomb-Blockade

  • Lee, Byung T.;Park, Jung B.
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.208-211
    • /
    • 1997
  • We have fabricated a single-electron-tunneling(SET) transistor with a dual gate geometry based on the SOI structure prepared by SIMOX wafers. The split-gate is the lower-gate is the lower-level gate and located ∼ 100${\AA}$ right above the inversion layer 2DEG active channel, which yields strong carrier confinement with fully controllable tunneling potential barrier. The transistor is operating at low temperatures and exhibits the single electron tunneling behavior through nano-size quantum dot. The Coulomb-Blockade oscillation is demonstrated at 15mK and its periodicity of 16.4mV in the upper-gate voltage corresponds to the formation of quantum dots with a capacity of 9.7aF. For non-linear transport regime, Coulomb-staircases are clearly observed up to four current steps in the range of 100mV drain-source bias. The I-V characteristics near the zero-bias displays typical Coulomb-gap due to one-electron charging effect.

  • PDF

Low Temperature Characteristics of Schottky Barrier Single Electron and Single Hole Transistors

  • Jang, Moongyu;Jun, Myungsim;Zyung, Taehyoung
    • ETRI Journal
    • /
    • 제34권6호
    • /
    • pp.950-953
    • /
    • 2012
  • Schottky barrier single electron transistors (SB-SETs) and Schottky barrier single hole transistors (SB-SHTs) are fabricated on a 20-nm thin silicon-on-insulator substrate incorporating e-beam lithography and a conventional CMOS process technique. Erbium- and platinum-silicide are used as the source and drain material for the SB-SET and SB-SHT, respectively. The manufactured SB-SET and SB-SHT show typical transistor behavior at room temperature with a high drive current of $550{\mu}A/{\mu}m$ and $-376{\mu}A/{\mu}m$, respectively. At 7 K, these devices show SET and SHT characteristics. For the SB-SHT case, the oscillation period is 0.22 V, and the estimated quantum dot size is 16.8 nm. The transconductance is $0.05{\mu}S$ and $1.2{\mu}S$ for the SB-SET and SB-SHT, respectively. In the SB-SET and SB-SHT, a high transconductance can be easily achieved as the silicided electrode eliminates a parasitic resistance. Moreover, the SB-SET and SB-SHT can be operated as a conventional field-effect transistor (FET) and SET/SHT depending on the bias conditions, which is very promising for SET/FET hybrid applications. This work is the first report on the successful operations of SET/SHT in Schottky barrier devices.

Simulation and Modelling of the Write/Erase Kinetics and the Retention Time of Single Electron Memory at Room Temperature

  • Boubaker, Aimen;Sghaier, Nabil;Souifi, Abdelkader;Kalboussi, Adel
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권2호
    • /
    • pp.143-151
    • /
    • 2010
  • In this work, we propose a single electron memory 'SEM' design which consist of two key blocs: A memory bloc, with a voltage source $V_{Mem}$, a pure capacitor connected to a tunnel junction through a metallic memory node coupled to the second bloc which is a Single Electron Transistor "SET" through a coupling capacitance. The "SET" detects the potential variation of the memory node by the injection of electrons one by one in which the drainsource current is presented during the memory charge and discharge phases. We verify the design of the SET/SEM cell by the SIMON tool. Finally, we have developed a MAPLE code to predict the retention time and nonvolatility of various SEM structures with a wide operating temperature range.

Analysis of Tunnelling Rate Effect on Single Electron Transistor

  • Sheela, L.;Balamurugan, N.B.;Sudha, S.;Jasmine, J.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1670-1676
    • /
    • 2014
  • This paper presents the modeling of Single Electron Transistor (SET) based on Physical model of a device and its equivalent circuit. The physical model is derived from Schrodinger equation. The wave function of the electrode is calculated using Hartree-Fock method and the quantum dot calculation is obtained from WKB approximation. The resulting wave functions are used to compute tunneling rates. From the tunneling rate the current is calculated. The equivalent circuit model discuss about the effect of capacitance on tunneling probability and free energy change. The parameters of equivalent circuit are extracted and optimized using genetic algorithm. The effect of tunneling probability, temperature variation effect on tunneling rate, coulomb blockade effect and current voltage characteristics are discussed.

홉필드 신경회로망을 위한 단일전자 소자 (Single-Electron Devices for Hopfield Neural Network)

  • 유윤섭
    • 대한전자공학회논문지SD
    • /
    • 제45권6호
    • /
    • pp.16-21
    • /
    • 2008
  • 본 논문은 새롭게 제안된 단일전자 소자(single-electron device) 및 회로를 이용한 새로운 형태의 홉필드 신경회로망(Hopfield neural network)을 소개한다. 홉필드 신경회로망의 전기적 모델 내부에서 가변저항으로 사용되는 단일전자 시냅스(single-electron synapse)와 비선형 활성함수(nonlinear activation function)로 사용되는 두 단의 단일전자 인버터(single-electron inverter)를 몬테-칼로(Monte-Carlo) 방식의 단일전자 회로 시뮬레이터로 동작을 검증한다.

Single-Crystal Silicon Thin-Film Transistor on Transparent Substrates

  • Wong, Man;Shi, Xuejie
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1103-1107
    • /
    • 2005
  • Single-crystal silicon thin films on glass (SOG) and on fused-quartz (SOQ) were prepared using wafer bonding and hydrogen-induced layer transfer. Thinfilm transistors (TFTs) were subsequently fabricated. The high-temperature processed SOQ TFTs show better device performance than the low-temperature processed SOG TFTs. Tensile and compressive strain was measured respectively on SOQ and SOG. Consistent with the tensile strain, enhanced electron effective mobility was measured on the SOQ TFTs.

  • PDF

단전자 트랜지스터로 구성된 논리 게이트 특성에 관한 연구 (A Study of Single Electron Transistor Logic Characterization Using a SPICE Macro-Modeling)

  • 김경록;김대환;이종덕;박병국
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(2)
    • /
    • pp.111-114
    • /
    • 2000
  • Single Electron Transistor Logic (SETL) can be characterized by HSPICE simulation using a SPICE macro model. First, One unit SET is characterized by Monte-carlo simulation and then we fit SPICE macro-modeling equations to its characteristics. Second, using this unit SET, we simulate the transient characteristics of two-input NAND gate in both the static and dynamic logic schemes. The dynamic logic scheme shows more stable operation in terms of logic-swing and on/off current ratio. Also, there is a merit that we can use the SET only as current on-off switch without considering the voltage gain.

  • PDF