• 제목/요약/키워드: Single domain

Search Result 1,087, Processing Time 0.137 seconds

Deep learning-based de-fogging method using fog features to solve the domain shift problem (Domain Shift 문제를 해결하기 위해 안개 특징을 이용한 딥러닝 기반 안개 제거 방법)

  • Sim, Hwi Bo;Kang, Bong Soon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1319-1325
    • /
    • 2021
  • It is important to remove fog for accurate object recognition and detection during preprocessing because images taken in foggy adverse weather suffer from poor quality of images due to scattering and absorption of light, resulting in poor performance of various vision-based applications. This paper proposes an end-to-end deep learning-based single image de-fogging method using U-Net architecture. The loss function used in the algorithm is a loss function based on Mahalanobis distance with fog features, which solves the problem of domain shifts, and demonstrates superior performance by comparing qualitative and quantitative numerical evaluations with conventional methods. We also design it to generate fog through the VGG19 loss function and use it as the next training dataset.

Software-based Simple Lock-in Amplifier and Built-in Sound Card for Compact and Cost-effective Terahertz Time-domain Spectroscopy System

  • Yu-Jin Nam;Jisoo Kyoung
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.683-691
    • /
    • 2023
  • A typical terahertz time-domain spectroscopy system requires large, expensive, and heavy hardware such as a lock-in amplifier and a function generator. In this study, we replaced the lock-in amplifier and the function generator with a single sound card built into a typical desktop computer to significantly reduce the system size, weight, and cost. The sound card serves two purposes: 1 kHz chopping signal generation and raw data acquisition. A unique software lock-in (Python coding program to eliminate noise from raw data) method was developed and successfully extracted THz time-domain signals with a signal-to-noise ratio of ~40,000 (the intensity ratio between the peak and average noise levels). The built-in sound card with the software lock-in method exhibited sufficiently good performance compared with the hardware-based method.

Designing Single-Differenced Position-Domain Hatch Filter for Real-Time Kinematic GNSS (실시간 동적 위성항법을 위한 단일차분 위치영역 Hatch 필터의 설계)

  • Lee, Hyung-Keun;Rizos, C.;Jee, Gyu-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.59-69
    • /
    • 2005
  • A position domain Hatch filter is proposed as an efficient carrier-smoothed-code processing algorithm for real-time kinematic differential global satellite navigation systems. The well-known range domain Hatch filter is newly interpreted with a stochastical point of view. The interpretation result is extended to derive the position domain Hatch filter. By a covariance simulation, it is shown that Hatch gain is, in general, more efficient than Kalman-type gain in carrier-smoothed-code processing and the proposed position domain Hatch filter is more advantageous than the conventional range domain Hatch filter if the visible satellite constellation changes during the positioning task.

Molecular and Structural Characterization of the Domain 2 of Hepatitis C Virus Non-structural Protein 5A

  • Liang, Yu;Kang, Cong Bao;Yoon, Ho Sup
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • Hepatitis C virus (HCV) non-structural protein 5A protein (NS5A), which consists of three functional domains, is involved in regulating viral replication, interferon resistance, and apoptosis. Recently, the three-dimensional structure of the domain 1 was determined. However, currently the molecular basis for the domains 2 and 3 of HCV NS5A is yet to be defined. Toward this end, we expressed, purified the domain 2 of the NS5A (NS5A-D2), and then performed biochemical and structural studies. The purified domain 2 was active and was able to bind NS5B and PKR, biological partners of NS5A. The results from gel filtration, CD analysis, 1D $^1H$ NMR and 2D $^1H-^{15}N$ heteronuclear single quantum correlation (HSQC) spectroscopy indicate that the domain 2 of NS5A appears to be flexible and disordered.

Load Disturbance Compensation for Stand-alone Inverters Using an Inductor Current Observer

  • Choe, Jung-Muk;Moon, Seungryul;Byen, Byeng-Joo;Lai, Jih-Sheng;Lim, Young-Bae;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.389-397
    • /
    • 2017
  • A control scheme for stand-alone inverters that utilizes an inductor current observer (ICO) is proposed. The proposed method measures disturbance load currents using a current sensor and it estimates the inductor current using the ICO. The filter parameter mismatch effect is analyzed to confirm the ICO's controllability. The ICO and controllers are designed in a continuous-time domain and transferred to a discrete-time domain with a digital delay. Experimental results demonstrate the effectiveness of the ICO using a 5-kVA single-phase stand-alone inverter prototype. The experimental results demonstrate that the observed current matches the actual current and that the proposed method can archive a less than 2.4% total harmonic distortion (THD) sinusoidal output waveform under nonlinear load conditions.

Instantaneous Control of a Single-phase PWM Converter Considering the Voltage Ripple Estimate (전압 리플 추정을 고려한 단산 PWM 컨버터의 순시치 제어)

  • 김만기;이우철;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.27-33
    • /
    • 1997
  • In this paper, instantaneous controller of a single-phase PWM converter is realized using DSP. The stable PI gain of the input current and the DC link voltage control system is designed. The DC link voltage control system can be designed in continuous-time domain. But as for the input current control system, the descretizing effect cannot be ignored so it must be designed in descrete-time domain considering the calculation time. The capacitance estimating algorithm which can be acquired through the ripple voltage is proposed. By this algorithm the DC link capacitance can be estimated even under the transient state. Experimental results show the input power factor of 99.1% and the voltage variation rate of $\pm$5% according to the load variation.

  • PDF

Single-Mode-Based Unified Speech and Audio Coding by Extending the Linear Prediction Domain Coding Mode

  • Beack, Seungkwon;Seong, Jongmo;Lee, Misuk;Lee, Taejin
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.310-318
    • /
    • 2017
  • Unified speech and audio coding (USAC) is one of the latest coding technologies. It is based on a switchable coding structure, and has demonstrated the highest levels of performance for both speech and music contents. In this paper, we propose an extended version of USAC with a single-mode of operation-which does not require a switching system-by extending the linear prediction-coding mode. The main concept of this extension is the adoption of the advantages of frequency-domain coding schemes, such as windowing and transition control. Subjective test results indicate that the proposed scheme covers speech, music, and mixed streams with adequate levels of performance. The obtained quality levels are comparable with those of USAC.

Sensitivity of an Anisotropic Magnetoresistance Device with Different Bias Conditions

  • Kim, T.S.;Kim, K.C.;Kim, Kibo;K. Koh;Y.J. Song;Song, Y.S.;Suh, S.J.;Kim, Y.S.
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.36-41
    • /
    • 2001
  • A micromagnetic model and a single-domain model simulation programs were used to analyze the sensitivity of a $20\mu m\times 60\mu m \times 1000{\AA}$ permalloy strip as a magnetoresistance sensor with bias fields of various directions and magnitudes. The micromagnetic model agrees with the measured sensitivity data better than the single-domain model. The data show the highest peak sensitivity with the bias field at 90$^{\circ}$to the current. The peak sensitivity decreases and the peak broadens as the bias angle decreases. The simulation using the micromagnetic model shows that a bias angle smaller than 90$^{\circ}$eads to magnetization patterns which are free from closure domains or vertices over a wider range of bias fields.

  • PDF

Two-Terminal Numerical Algorithm for Single-Phase Arcing Fault Detection and Fault Location Estimation Based on the Spectral Information

  • Kim, Hyun-Houng;Lee, Chan-Joo;Park, Jong-Bae;Shin, Joong-Rin;Jeong, Sang-Yun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.460-467
    • /
    • 2008
  • This paper presents a new numerical algorithm for the fault location estimation and arcing fault detection when a single-phase arcing ground fault occurs on a transmission line. The proposed algorithm derived in the spectrum domain is based on the synchronized voltage and current samples measured from the PMUs(Phasor Measurement Units) installed at both ends of the transmission lines. In this paper, the algorithm uses DFT(Discrete Fourier Transform) for estimation. The algorithm uses a short data window for real-time transmission line protection. Also, from the calculated arc voltage amplitude, a decision can be made whether the fault is permanent or transient. The proposed algorithm is tested through computer simulation to show its effectiveness.

Efficient Channel Delay Estimation for OFDM Systems over Doubly-Selective Fading Channels

  • Heo, Seo Weon;Lim, Jongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2218-2230
    • /
    • 2012
  • In this paper, we propose an efficient channel delay estimation method for orthogonal frequency-division multiplexing (OFDM) systems, especially over doubly-selective fading channels which are selective in both the symbol time domain and subcarrier frequency domain. For the doubly-selective fading channels in single frequency network (SFN), long and strong echoes exist and thus the conventional discrete Fourier Transform (DFT) based channel delay estimation system often fails to produce the exact channel delay profile. Based on the analysis of the discrete-time frequency response of the channel impulse response (CIR) coefficients in the DFT-based channel delay estimation system, we develop a method to effectively extract the true CIR from the aliased signals by employing a simple narrow-band low-pass filter (NB-LPF). The performance of the proposed system is verified using the COST207 TU6 SFN channel model.