• 제목/요약/키워드: Single dehazing algorithm

검색결과 11건 처리시간 0.022초

채도의 선형 변환을 이용한 단일 영상 안개 제거 (Single Image Dehazing Using Linear Transformation of Saturation)

  • 박태희
    • 대한임베디드공학회논문지
    • /
    • 제14권4호
    • /
    • pp.197-205
    • /
    • 2019
  • In this paper, an efficient single dehazing algorithm is proposed based on linear transformation by assuming that a linear relationship exists in saturation component between the haze image and haze-free image. First, we analyze the linearity of saturation channel, estimate the medium transmission map in terms of the saturation component. Then, the intensity of haze-free image is assumed by using CLAHE to enhance contrast of haze image. Experimental results demonstrate that proposed algorithm can naturally recover the image, especially can remove color distortion caused by conventional methods. Therefore, our approach is competitive with other state-of-the art single dehazing methods.

A Variational Framework for Single Image Dehazing Based on Restoration

  • Nan, Dong;Bi, Du-Yan;He, Lin-Yuan;Ma, Shi-Ping;Fan, Zun-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1182-1194
    • /
    • 2016
  • The single image dehazing algorithm in existence can satisfy the demand only for improving either the effectiveness or efficiency. In order to solve the problem, a novel variational framework for single image dehazing based on restoration is proposed. Firstly, the initial atmospheric scattering model is transformed to meet the kimmel's Retinex variational model. Then, the green light component of image is considered as an input of the variational framework, which is generated by the sensitivity of green wavelength. Finally, the atmospheric transmission map is achieved by multi-resolution pyramid reduction to improve the visual effect of the results. Experimental results demonstrate that the proposed method can remove haze effectively with less memory consumption.

Haze Scene Detection based on Hue, Saturation, and Dark Channel Distributions

  • Lee, Y.;Yang, Seungjoon
    • International Journal of Advanced Culture Technology
    • /
    • 제8권4호
    • /
    • pp.229-234
    • /
    • 2020
  • Dehazing significantly improves image quality by restoring the loss of contrast and color saturation for images taken in the presence. However, when applied to images not taken according to the prior information, dehazing can cause unintended degradation of image quality. To avoid unintended degradations, we present a hazy scene detection algorithm using a single image based on the distributions of hue, saturation, and dark channel. Through a heuristic approach, we find out statistical characteristics of the distribution of hue, saturation, and dark channels in the hazy scene and make a detection model using them. The proposed method can precede the dehazing to prevent unintended degradation. The detection performance evaluated with a set of test images shows a high hit rate with a low false alarm ratio. Ultimately the proposed method can be used to control the effect of dehazing so that the dehazing can be applied to wide variety of images without unintended degradation of image quality.

Lightweight multiple scale-patch dehazing network for real-world hazy image

  • Wang, Juan;Ding, Chang;Wu, Minghu;Liu, Yuanyuan;Chen, Guanhai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4420-4438
    • /
    • 2021
  • Image dehazing is an ill-posed problem which is far from being solved. Traditional image dehazing methods often yield mediocre effects and possess substandard processing speed, while modern deep learning methods perform best only in certain datasets. The haze removal effect when processed by said methods is unsatisfactory, meaning the generalization performance fails to meet the requirements. Concurrently, due to the limited processing speed, most dehazing algorithms cannot be employed in the industry. To alleviate said problems, a lightweight fast dehazing network based on a multiple scale-patch framework (MSP) is proposed in the present paper. Firstly, the multi-scale structure is employed as the backbone network and the multi-patch structure as the supplementary network. Dehazing through a single network causes problems, such as loss of object details and color in some image areas, the multi-patch structure was employed for MSP as an information supplement. In the algorithm image processing module, the image is segmented up and down for processed separately. Secondly, MSP generates a clear dehazing effect and significant robustness when targeting real-world homogeneous and nonhomogeneous hazy maps and different datasets. Compared with existing dehazing methods, MSP demonstrated a fast inference speed and the feasibility of real-time processing. The overall size and model parameters of the entire dehazing model are 20.75M and 6.8M, and the processing time for the single image is 0.026s. Experiments on NTIRE 2018 and NTIRE 2020 demonstrate that MSP can achieve superior performance among the state-of-the-art methods, such as PSNR, SSIM, LPIPS, and individual subjective evaluation.

Single Image Dehazing Using Dark Channel Prior and Minimal Atmospheric Veil

  • Zhou, Xiao;Wang, Chengyou;Wang, Liping;Wang, Nan;Fu, Qiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.341-363
    • /
    • 2016
  • Haze or fog is a common natural phenomenon. In foggy weather, the captured pictures are difficult to be applied to computer vision system, such as road traffic detection, target tracking, etc. Therefore, the image dehazing technique has become a hotspot in the field of image processing. This paper presents an overview of the existing achievements on the image dehazing technique. The intent of this paper is not to review all the relevant works that have appeared in the literature, but rather to focus on two main works, that is, image dehazing scheme based on atmospheric veil and image dehazing scheme based on dark channel prior. After the overview and a comparative study, we propose an improved image dehazing method, which is based on two image dehazing schemes mentioned above. Our image dehazing method can obtain the fog-free images by proposing a more desirable atmospheric veil and estimating atmospheric light more accurately. In addition, we adjust the transmission of the sky regions and conduct tone mapping for the obtained images. Compared with other state of the art algorithms, experiment results show that images recovered by our algorithm are clearer and more natural, especially at distant scene and places where scene depth jumps abruptly.

위성 영상에서 전달맵 보정 기반의 안개 제거를 이용한 강인한 특징 정합 (Robust Feature Matching Using Haze Removal Based on Transmission Map for Aerial Images)

  • 권오설
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1281-1287
    • /
    • 2016
  • This paper presents a method of single image dehazing and feature matching for aerial remote sensing images. In the case of a aerial image, transferring the information of the original image is difficult as the contrast leans by the haze. This also causes that the image contrast decreases. Therefore, a refined transmission map based on a hidden Markov random field. Moreover, the proposed algorithm enhances the accuracy of image matching surface-based features in an aerial remote sensing image. The performance of the proposed algorithm is confirmed using a variety of aerial images captured by a Worldview-2 satellite.

Dark Channel Prior을 이용한 LabVIEW 기반의 동영상 안개제거 (A LabVIEW-based Video Dehazing using Dark Channel Prior)

  • 노창수;김연교;정의필
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.101-107
    • /
    • 2017
  • LabVIEW coding for video dehazing was developed. The dark channel prior proposed by K. He was applied to remove fog based on a single image, and K. B. Gibson's median dark channel prior was applied, and implemented in LabVIEW. In other words, we improved the image processing speed by converting the existing fog removal algorithm, dark channel prior, to the LabVIEW system. As a result, we have developed a real-time fog removal system that can be commercialized. Although the existing algorithm has been utilized, since the performance has been verified real - time, it will be highly applicable in academic and industrial fields. In addition, fog removal is performed not only in the entire image but also in the selected area of the partial region. As an application example, we have developed a system that acquires clear video from the long distance by connecting a laptop equipped with LabVIEW SW that was developed in this paper to a 100~300 times zoom telescope.

은닉 마코프 랜덤 모델 기반의 전달 맵을 이용한 안개 제거 (Image Dehazing using Transmission Map Based on Hidden Markov Random Field Model)

  • 이민혁;권오설
    • 전자공학회논문지
    • /
    • 제51권1호
    • /
    • pp.145-151
    • /
    • 2014
  • 본 논문에서는 한 장의 영상에서 안개를 제거하는 알고리즘을 제안한다. 기존의 Dark Channel Prior(DCP) 알고리즘은 영상의 어두운 정보를 계산하여 전달량을 추정한 후, 매팅(matting) 기법을 사용하여 안개 영역을 보완하여 검출한다. 이 과정에서 블록현상이 발생하는 문제가 있으며 이로 인해 안개를 효율적으로 제거하는데 한계점이 있다. 이 문제를 해결하기 위해 본 논문에서는 Hidden Markov Random Field(HMRF) 와 Expectation-Maximization(EM) 알고리즘을 이용하여 매팅 과정에서 발생하는 블록문제를 해결하고자 하였다. 실험 결과를 통하여 제안한 방법은 기존 방법보다 안개제거에서 더 향상된 결과를 얻을 수 있음을 확인하였다.

위성 안개 영상을 위한 강인한 특징점 검출 기반의 영상 정합 (Image Matching Based on Robust Feature Extraction for Remote Sensing Haze Images)

  • 권오설
    • 방송공학회논문지
    • /
    • 제21권2호
    • /
    • pp.272-275
    • /
    • 2016
  • 본 논문은 위성 영상을 위한 안개 제거 및 표면반사율 기반의 특징점 검출 방법을 제안한다. 기존의 안개 제거를 위한 DCP 방법은 패치 기반의 처리 방식으로 인해 전달맵 생성 과정에서 블록현상이 발생하게 되고, 이는 영상을 흐리게 하는 원인이 된다. 따라서 제안한 은닉마코프 기반의 방법은 영상의 블록 현상을 제거하고 선명도를 향상한다. 또한 표면반사율 기반의 견고한 특징점 추출을 통해서 영상 정합의 정확성을 향상하였다. 실험을 통해 제안한 방법이 기존 방법에 비해 안개 제거의 성능에서 우수함을 확인하였으며 이를 통해 특징 검출 및 위성 영상 정합에 적합함을 확인하였다.

그래프 기반 영역 분할 방법을 이용한 매체 전달량 계산과 가시성 복원 (Estimation of the Medium Transmission Using Graph-based Image Segmentation and Visibility Restoration)

  • 김상균;박종현;박순영
    • 전자공학회논문지
    • /
    • 제50권4호
    • /
    • pp.163-170
    • /
    • 2013
  • 일반적으로 외부에서 획득되는 영상은 대기 중에 존재하는 먼지, 물방울, 연무, 안개, 연기 등에 의해 화질이 감쇠되고 결과적으로 대비도 감소와 색상의 왜곡 현상이 발생한다. 그리나 안개와 배경 사이에 내재된 모호성 때문에 배경으로부터 안개를 제거하는 작업은 결코 간단한 문제가 아니다. 본 논문에서는 단일 영상에서 비용함수로서 에지의 기울기를 이용한 그래프 기반 영역 분할 방법을 이용하여 안개 제거를 위한 새로운 방법을 제안한다. 우리는 장면을 깊이 관련 정보에 따라 여러 영역으로 분리하고 전역적인 안개값을 추정한다. 매체의 전달량은 그래프 기반 영역 분할 알고리즘의 임계 함수에 의해서 직접적으로 계산된다. 매체 전달량과 안개값이 계산되면 안개 모델식에 의해서 쉽게 안개가 제거된 영상을 복원할 수 있다. 그리고 안개 영상과 복원된 영상간의 에지의 기울기 비율을 계산함으로써 기존의 연구 방법과 제안된 연구 방법의 가시성 복원 정도를 비교 평가하였다. 다양한 안개 영상에 대한 실험 결과 제안된 방법의 우수한 안개 제거 및 화질 복원 능력이 입증되었다.