• Title/Summary/Keyword: Single crystal NMR

Search Result 65, Processing Time 0.028 seconds

Refinement of protein NMR structures using atomistic force field and implicit solvent model: Comparison of the accuracies of NMR structures with Rosetta refinement

  • Jee, Jun-Goo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • There are two distinct approaches to improving the quality of protein NMR structures during refinement: all-atom force fields and accumulated knowledge-assisted methods that include Rosetta. Mao et al. reported that, for 40 proteins, Rosetta increased the accuracies of their NMR-determined structures with respect to the X-ray crystal structures (Mao et al., J. Am. Chem. Soc. 136, 1893 (2014)). In this study, we calculated 32 structures of those studied by Mao et al. using all-atom force field and implicit solvent model, and we compared the results with those obtained from Rosetta. For a single protein, using only the experimental NOE-derived distances and backbone torsion angle restraints, 20 of the lowest energy structures were extracted as an ensemble from 100 generated structures. Restrained simulated annealing by molecular dynamics simulation searched conformational spaces with a total time step of 1-ns. The use of GPU-accelerated AMBER code allowed the calculations to be completed in hours using a single GPU computer-even for proteins larger than 20 kDa. Remarkably, statistical analyses indicated that the structures determined in this way showed overall higher accuracies to their X-ray structures compared to those refined by Rosetta (p-value < 0.01). Our data demonstrate the capability of sophisticated atomistic force fields in refining NMR structures, particularly when they are coupled with the latest GPU-based calculations. The straightforwardness of the protocol allows its use to be extended to all NMR structures.

Cesium NMR in a Paramagnetic $CsMnCl_{3}$ Single Crystal (상자성체 $CsMnCl_{3}$ 단결정에서 $^{133}Cs$ 핵자기공명 연구)

  • Tae-Jong Han
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.184-187
    • /
    • 1994
  • Nuclear magnetic resonance of $^{133}Cs$ in a $CsMnCl_{3}$ single crystal grown by the Czochralski method has been investigated by employing a Bruker FT NMR spectrometer. The $^{133}Cs$ resonance of two different groups were recorded. Various transitions belonging to two cesium spectra of a different intensity ratio are analyzed. The quadrupole coupling constant of Cs(I) is $0.15{\pm}0.01$ MHz, and that of Cs(II) is $0.21{\pm}0.01$ MHz. The anisotropy parameter is zero for both. The principal axes of the EFG tensors for these two sites are found to be the same. The Z axis, conventionally the largest component of the EFG tensor, is parallel to the crystallographic c-axis.

  • PDF

Temperature Dependence of $^{23}Na$ NMR in a $NaMnCl_{3}$ Single Crystal ($NaMnCl_{3}$ 단결정에서 $^{23}Na$ 핵자기공명의 온도 의존성)

  • Ae Ran Lim;Ji Eun Kim;Tae Jong Han
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.3
    • /
    • pp.175-178
    • /
    • 1995
  • The temperature dependence of $^{23}Na$ nuclear magnetic resonance in a $NaMnCl_{3}$ single crystal grown by the Czochralski method has been investigated by employing a Bruker FT NMR spectrometer operating at 4.7 T. The quadrupole coupling constant of $^{23}Na$ in $NaMnCl_{3}$ increases as the temperature increases. The temperature dependence of $e^{2}qQ/h$ may be fitted with a linear equation of the form $e^{2}qQ/h=155+0.117(T-T_{r})\;kHz$ for the temperature range of 140-380 K.

  • PDF

Synthesis, Crystal Structure and Fungicidal Activities of New Type Oxazolidinone-Based Strobilurin Analogues

  • Li, Yuhao;Liu, Rui;Yan, Zhangwei;Zhang, Xiangning;Zhu, Hongjun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3341-3347
    • /
    • 2010
  • A series of oxazolidinone-based strobilurin analogues were efficiently synthesized by the reaction of 3-(2-bromomethylphenyl) oxazolidin-2-one with 1-substituted phenyl-2H-pyrazolin-3-one. Their structures were confirmed and characterized by $^1H$-NMR, $^{13}C$-NMR, elemental analysis, and mass spectroscopy. In addition, the crystal structure of the target compound 3-(2-((1-phenyl-2H-pyrazol-3-yloxy)methyl)phenyl) oxazolidin-2-one was determined by single crystal X-ray diffraction. The bioassay results of these compounds indicated that some of the oxazolidin-2-one derivatives containing N-substituted phenyl 2H-pyrazol ring exhibited potential in vivo fungicidal activities against M. grisea at the dosage of $1\;g\;L^{-1}$.

Synthesis, crystal structure, and analytical characterizations of amphiphilic palladium(II) compound containing bis(benzylthio)methylenepropanedioate

  • Tae Hwan Noh
    • Analytical Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.198-203
    • /
    • 2023
  • The reaction of cis-protected (Me4en)Pd(II) species with potentially multidentate bis(benzylthio)methylenepropanedioate (L) was carried out to obtain a monometallic compound, [(Me4en)Pd(L)], in O,O'-coordination mode. The bis(benzylthio)methylene group was bent strikingly from the palladium square plane at the dihedral angle of 70.40°. The physicochemical properties of the present palladium(II) compound were fully characterized by means of infrared and nuclear magnetic resonance spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction measurement.

207Pb nuclear magnetic resonance study in PbWO4:Mn2+ and PbWO4:Dy3+ single crystals

  • Yeom, Tae Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.107-114
    • /
    • 2018
  • In this exploration, the nuclear magnetic resonance of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ Single Crystals using FT-NMR spectrometer is investigated. The line width of the resonance line for the $^{207}Pb$ nucleus decreases as temperature increases due to motional narrowing. The chemical shift of $^{207}Pb$ NMR spectra also increases as temperature decreases for both crystals. The spinlattice relaxation times $T_1$ of $^{39}K$ nucleus were calculated as a function of temperature (180 K~400 K). The $T_1$ of $^{207}Pb$ nucleus decreases as temperature increases. The dominant relaxation mechanism at the studied temperature range can be deduced as the Raman process, which is the coupling between lattice vibrations and the nuclear spins. This deduction is substantiated by the fact that the nuclear spin-lattice relaxation rate $1/T_1$ of the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystal is proportional to $T^2$, or temperature squared. The activation energies for the $^{207}Pb$ nucleus in $PbWO_4:Mn^{2+}$ and $PbWO_4:Dy^{3+}$ single crystals are $E_a=49{\pm}1meV$ and $E_a=47{\pm}2meV$, respectively.

Role of NH4 and H2O in Tutton Salt (NH4)2M(SO4)2·6H2O (M=Fe and Zn) Single Crystals Studied by 1H and 14N NMR at High Temperatures

  • Park, Sung Soo;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.2
    • /
    • pp.67-71
    • /
    • 2017
  • At high temperature, the roles of $NH_4$ and $H_2O$ in $(NH_4)_2Fe(SO_4)_2{\cdot}6H_2O$ and $(NH_4)_2Zn(SO_4)_2{\cdot}6H_2O$ single crystals were investigated using a pulse NMR spectrometer. Temperature was shown to have a significant influence, causing changes in the deformation of $NH_4$ and $H_2O$. From the $^1H$ NMR and $^{14}N$ NMR spectrum, the forms of environment surrounding $^{14}N$ in $NH_4$ groups is more important than the loss of $H_2O$ groups. NMR studies indicate that $NH_4{^+}$ ions in Tutton salts play an important role in the changes of the crystal structure at high temperatures.

Synthesis and Characterization of New Group 13 Complexes of 2-Acetylpyridine-S-methyldithiocarbazate. Single-Crystal Structure of Me₂Ga[$NC_5H_4C$(CH₃)NNC(S)SMe] and Me₂In[$NC_5H_5C$(CH₃)NNC(S)SMe]

  • 백철기;강상욱;이채호;이영행;고재정
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.311-316
    • /
    • 1997
  • The synthesis and characterization of the mononuclear group 13 heterocyclic carboxaldehyde methyldithiocarbazate complexes Me2M[NC5H4CRNNC(S)SCH3] (M=Al, R=H(1); M=Ga, R=H(2); M=Al, R=CH3(3); M-Ga, R=CH3(4); M=In, R=CH3(5)) are described. Compounds 1-5 were prepared by the reaction of MMe3 (M=Al, Ga, In) with 2-formy or 2-acetylpyridine-S-methyldithiocarbazate in toluene. These compounds 1-5 have been characterized by microanalysis, NMR (1H, 13C) spectroscopy, mass spectra, and single-crystal X-ray diffraction. X-ray single-crystal diffraction analyses reveal that 4-5 are mononuclear metal compounds with coordination number of 5 and N,N,S coordination mode.