• Title/Summary/Keyword: Single breath-hold cine magnetic resonance

Search Result 3, Processing Time 0.015 seconds

Assessment of Left Ventricular Function with Single Breath-Hold Magnetic Resonance Cine Imaging in Patients with Arrhythmia

  • Bak, So Hyeon;Kim, Sung Mok;Park, Sung-Ji;Kim, Min-Ji;Choe, Yeon Hyeon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2017
  • Purpose: To evaluate quantification results of single breath-hold (SBH) magnetic resonance (MR) cine imaging compared to results of conventional multiple breath-hold (MBH) technique for left ventricular (LV) function in patients with cardiac arrhythmia. Materials and Methods: MR images of patients with arrhythmia who underwent MBH and SBH cine imaging at the same time on a 1.5T MR scanner were retrospectively reviewed. Both SBH and MBH cine imaging were performed with balanced steady state free precession. SBH scans were acquired using temporal parallel acquisition technique (TPAT). Fifty patients ($65.4{\pm}12.3years$, 72% men) were included. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), myocardial mass, and LV regional wall motion were evaluated. Results: EF, myocardial mass, and regional wall motion were not significantly different between SBH and MBH acquisition techniques (all P-values > 0.05). EDV, ESV, and SV were significant difference between the two techniques. These parameters for SBH cine imaging with TPAT tended to lower than those in MBH. EF and myocardial mass of SBH cine imaging with TPAT showed good correlation with values of MBH cine imaging in Passing-Bablok regression charts and Bland-Altman plots. However, SBH imaging required significantly shorter acquisition time than MBH cine imaging ($15{\pm}7sec$ vs. $293{\pm}104sec$, P < 0.001). Conclusion: SBH cine imaging with TPAT permits shorter acquisition time with assessment results of global and regional LV function comparable to those with MBH cine imaging in patients with arrhythmia.

Fast Cardiac CINE MRI by Iterative Truncation of Small Transformed Coefficients

  • Park, Jinho;Hong, Hye-Jin;Yang, Young-Joong;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • Purpose: A new compressed sensing technique by iterative truncation of small transformed coefficients (ITSC) is proposed for fast cardiac CINE MRI. Materials and Methods: The proposed reconstruction is composed of two processes: truncation of the small transformed coefficients in the r-f domain, and restoration of the measured data in the k-t domain. The two processes are sequentially applied iteratively until the reconstructed images converge, with the assumption that the cardiac CINE images are inherently sparse in the r-f domain. A novel sampling strategy to reduce the normalized mean square error of the reconstructed images is proposed. Results: The technique shows the least normalized mean square error among the four methods under comparison (zero filling, view sharing, k-t FOCUSS, and ITSC). Application of ITSC for multi-slice cardiac CINE imaging was tested with the number of slices of 2 to 8 in a single breath-hold, to demonstrate the clinical usefulness of the technique. Conclusion: Reconstructed images with the compression factors of 3-4 appear very close to the images without compression. Furthermore the proposed algorithm is computationally efficient and is stable without using matrix inversion during the reconstruction.

A New Method for Aortic Valve Planimetry with High-Resolution 3-Dimensional MRI and Its Comparison with Conventional Cine MRI and Echocardiography for Assessing the Severity of Aortic Valvular Stenosis

  • Hae Jin Kim;Yeon Hyeon Choe;Sung Mok Kim;Eun Kyung Kim;Mirae Lee;Sung-Ji Park;Joonghyun Ahn;Keumhee C. Carriere
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1266-1278
    • /
    • 2021
  • Objective: We aimed to compare the aortic valve area (AVA) calculated using fast high-resolution three-dimensional (3D) magnetic resonance (MR) image acquisition with that of the conventional two-dimensional (2D) cine MR technique. Materials and Methods: We included 139 consecutive patients (mean age ± standard deviation [SD], 68.5 ± 9.4 years) with aortic valvular stenosis (AS) and 21 asymptomatic controls (52.3 ± 14.2 years). High-resolution T2-prepared 3D steady-state free precession (SSFP) images (2.0 mm slice thickness, 10 contiguous slices) for 3D planimetry (3DP) were acquired with a single breath hold during mid-systole. 2D SSFP cine MR images (6.0 mm slice thickness) for 2D planimetry (2DP) were also obtained at three aortic valve levels. The calculations for the effective AVA based on the MR images were compared with the transthoracic echocardiographic (TTE) measurements using the continuity equation. Results: The mean AVA ± SD derived by 3DP, 2DP, and TTE in the AS group were 0.81 ± 0.26 cm2, 0.82 ± 0.34 cm2, and 0.80 ± 0.26 cm2, respectively (p = 0.366). The intra-observer agreement was higher for 3DP than 2DP in one observer: intraclass correlation coefficient (ICC) of 0.95 (95% confidence interval [CI], 0.94-0.97) and 0.87 (95% CI, 0.82-0.91), respectively, for observer 1 and 0.97 (95% CI, 0.96-0.98) and 0.98 (95% CI, 0.97-0.99), respectively, for observer 2. Inter-observer agreement was similar between 3DP and 2DP, with the ICC of 0.92 (95% CI, 0.89-0.94) and 0.91 (95% CI, 0.88-0.93), respectively. 3DP-derived AVA showed a slightly higher agreement with AVA measured by TTE than the 2DP-derived AVA, with the ICC of 0.87 (95% CI, 0.82-0.91) vs. 0.85 (95% CI, 0.79-0.89). Conclusion: High-resolution 3D MR image acquisition, with single-breath-hold SSFP sequences, gave AVA measurement with low observer variability that correlated highly with those obtained by TTE.