• Title/Summary/Keyword: Single Substrate Transfer

Search Result 55, Processing Time 0.034 seconds

Single-Crystal Silicon Thin-Film Transistor on Transparent Substrates

  • Wong, Man;Shi, Xuejie
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1103-1107
    • /
    • 2005
  • Single-crystal silicon thin films on glass (SOG) and on fused-quartz (SOQ) were prepared using wafer bonding and hydrogen-induced layer transfer. Thinfilm transistors (TFTs) were subsequently fabricated. The high-temperature processed SOQ TFTs show better device performance than the low-temperature processed SOG TFTs. Tensile and compressive strain was measured respectively on SOQ and SOG. Consistent with the tensile strain, enhanced electron effective mobility was measured on the SOQ TFTs.

  • PDF

Cost down thin film silicon substrate for layer transfer formation study (저가격 박막 실리콘 기판을 위한 단결정 실리콘 웨이퍼에 layer transfer 형성 연구)

  • Kwon, Jae-Hong;Kim, Dong-Seop;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.85-88
    • /
    • 2004
  • Mono-crystalline silicon(mono-Si) is both abundant in our environment and an excellent material for Si device applications. However, single crystalline silicon solar cell has been considered to be expensive for terrestrial applications. For that reason, the last few years have seen very rapid progress in the research and development activities of layer transfer(LT) processes. Thin film Si layers which can be detached from a reusable mono-Si wafers served as a substrate for epitaxial growth. The epitaxial films have a very high efficiency potential. LT technology is a promising approach to reduce fabrication cost with high efficiency at large scale since expensive Si substrate can be recycled. Low quality Si can be used as a substrate. Therefore, we propose one of the major technologies on fabricating thin film Si substrate using a LT. In this paper, we study the LT method using the electrochemical etching(ECE) and solid edge.

  • PDF

Improvement of PDMS graphene transfer method through surface modification of target substrate (폴리디메틸실록산(PDMS)을 이용한 그래핀 전사법 개선을 위한 계면처리 연구)

  • Han, Jae-Hyung;Choi, Mu-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.232-239
    • /
    • 2015
  • In this paper, we study the dry transfer technology utilizing PDMS (Polydimethylsiloxane) stamp of a large single-layer graphene grown on Cu-foil as catalytic metal by using Chemical Vapor Deposition (CVD). By changing the surface property of the target substrate through $UV/O_3$ treatment, we can transfer the graphene on the target substrate while minimizing mechanical damages of graphene layer. Multi-layer (1~4 layers) graphene was stacked on $SiO_2/Si$ wafer successfully by repeating thetransfer method/process and then optical transmittance and sheet resistance of graphene layers have been measured as a quality assessment.

Toward Charge Neutralization of CVD Graphene

  • Kim, Soo Min;Kim, Ki Kang
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.268-272
    • /
    • 2015
  • We report the systematic study to reduce extrinsic doping in graphene grown by chemical vapor deposition (CVD). To investigate the effect of crystallinity of graphene on the extent of the extrinsic doping, graphene samples with different levels of crystal quality: poly-crystalline and single-crystalline graphene (PCG and SCG), are employed. The graphene suspended in air is almost undoped regardless of its crystallinity, whereas graphene placed on an $SiO_2/Si$ substrate is spontaneously p-doped. The extent of p-doping from the $SiO_2$ substrate in SCG is slightly lower than that in PCG, implying that the defects in graphene play roles in charge transfer. However, after annealing treatment, both PCG and SCG are heavily p-doped due to increased interaction with the underlying substrate. Extrinsic doping dramatically decreases after annealing treatment when PCG and SCG are placed on the top of hexagonal boron nitride (h-BN) substrate, confirming that h-BN is the ideal substrate for reducing extrinsic doping in CVD graphene.

Direct printing of organic single crystal nanowire arrays by using Liquid-bridge-mediated nanotransfer molding

  • Oh, Hyun-S.;Baek, Jang-Mi;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.473-473
    • /
    • 2011
  • In recent years, organic thin film transistors OTFTs based on conductive-conjugated molecules have received significant attention. We report a fabrication of organic single crystal nanowires that made on Si substrates by liquid bridge-mediated nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the organic single crystal nanowire and the Si substrate. Pentacene is the most promising organic semiconductors. However pentacene has insolubility in organic solvents so pentacene OTFTs can be achieved with vacuum evaporation system. However 6, 13-bis (triisopropylsilylethynyl) (TIPS) pentacene has high solubility in organic solvent that reported by Anthony et al. Furthermore, the substituted rings in TIPS-pentacene interrupt the herringbone packing, which leads to cofacial ${\pi}-{\pi}$ stacking. The patterned TIPS-Pentacene single crystal nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

A Study on the Heat Transfer Characteristics of Single Bead Deposition of Inconel 718 Superalloy on S45C Structural Steel Using a DMT Process (DMT 공정을 이용한 S45C 구조용강 위 Inconel 718 초합금 단일 비드 적층시 열전달 특성 분석에 관한 연구)

  • Lee, Kwang-Kyu;Ahn, Dong-Gyu;Kim, Woo-Sung;Lee, Ho-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.56-63
    • /
    • 2020
  • The heat transfer phenomenon in the vicinity of the irradiated region of a focused laser beam of a DMT process greatly affects both the deposition characteristics of powders on a substrate and the properties of the deposited region. The goal of this paper is to investigate the heat transfer characteristics of a single bead deposition of Inconel 718 powders on S45C structural steel using a laser-aided direct metal tooling (DMT) process. The finite element analysis (FEA) model with a Gaussian volumetric heat flux is developed to simulate a three-dimensional transient heat transfer phenomenon. The cross-section of the bead for the FEA is estimated with an equivalent area method using experimental results. Through the comparison of the results of the experiments and those of the analysis, the effective beam radius of the bottom region of the volumetric heat flux and the efficiency of the heat flux model for different powers and travel speeds of the laser are predicted. From the results of the FEA, the influence of the power and the travel speed of the laser on the creation of a steady-state heat transfer region and the formation of the heat-affected zone (HAZ) in the substrate are investigated.

Evaluation of a Wafer Transportation Speed for Propulsion Nozzle Array on Air Levitation System (공기 부상방식 이송시스템의 추진 노즐 배치방법에 따른 웨이퍼 이송 속도 평가)

  • Hwang Young-Kyu;Moon In-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.306-313
    • /
    • 2006
  • Automated material handling system is being used as a method to reduce manufacturing cost in the semiconductor and flat panel displays (FPDs) manufacturing process. Those are considering switch-over from the traditional cassette system to single-substrate transfer system to reduce raw materials of stocks in the processing line. In the present study, the wafer transportation speed has been evaluated by numerical and experimental method for three propulsion nozzle array (face, front, rear) in an air levitation system. Test facility for 300 mm wafer was equipped with two control tracks and a transfer track of 1,500mm length. The diameter of propulsion nozzle is 0.8mm and air velocity of wafer propulsion is $50\sim150m/s$. We found that the experimental results of the wafer transportation speed were well agreed with the numerical ones. Namely, the predicted values of the maximum wafer transportation speed are higher than those values of experimental data by 16% and the numerical result of the mean wafer transportation speed is higher than the experimental result within 20%.

Fabrication of Single Crystal Poly(3,4-ethylenedioxythiophene) Nanowire Arrays

  • Cho, Bo-Ram;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.537-537
    • /
    • 2012
  • We have studied a fabrication of vapor phase polymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) nanowire arrays for the first time. The vapor-phase polymerization (VPP) technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates, including on the nanoscale, or prepare thin films of self-assembled molecules, micropatterns, or modified microstructures of pure conducting polymers. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is for the arrayed formation of two- or three-dimensional structures with feature sizes as small as tens of nanometers over large areas up to 4 inches across and is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been fabricated to single crystal PEDOT nanowires investigated Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF