• Title/Summary/Keyword: Single Shunt Current

Search Result 41, Processing Time 0.03 seconds

An autonomous synchronized switch damping on inductance and negative capacitance for piezoelectric broadband vibration suppression

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chang, Lulu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.501-517
    • /
    • 2016
  • Synchronized switch damping (SSD) is a structural vibration control technique in which a piezoelectric patch attached to or embedded into the structure is connected to or disconnected from the shunt circuit in order to dissipate the vibration energy of the host structure. The switching process is performed by a digital signal processor (DSP) which detects the displacement extrema and generates a command to operate the switch in synchronous with the structure motion. Recently, autonomous SSD techniques have emerged in which the work of DSP is taken up by a low pass filter, thus making the whole system autonomous or self-powered. The control performance of the previous autonomous SSD techniques heavily relied on the electrical quality factor of the shunt circuit which limited their damping performance. Thus in order to reduce the influence of the electrical quality factor on the damping performance, a new autonomous SSD technique is proposed in this paper in which a negative capacitor is used along with the inductor in the shunt circuit. Only a negative capacitor could also be used instead of inductor but it caused saturation of negative capacitor in the absence of an inductor due to high current generated during the switching process. The presence of inductor in the shunt circuit of negative capacitor limits the amount of current supplied by the negative capacitance, thus improving the damping performance. In order to judge the control performance of proposed autonomous SSDNCI, a comparison is made between the autonomous SSDI, autonomous SSDNC and autonomous SSDNCI techniques for the control of an aluminum cantilever beam subjected to both single mode and multimode excitation. A value of negative capacitance slightly greater than the piezoelectric patch capacitance gave the optimum damping results. Experiment results confirmed the effectiveness of the proposed autonomous SSDNCI technique as compared to the previous techniques. Some limitations and drawbacks of the proposed technique are also discussed.

Reduction of Minimum Switching Duration in the Measurement of Three Phase Current with DC-Link Current Sensor (DC링크 전류센서를 이용한 삼상전류 측정 방식에서 최소 스위칭 시간의 단축)

  • 김경서
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.649-654
    • /
    • 2003
  • The simplest method for measuring output currents of the three phase inverters is to measure them with three current sensors such as hall sensors. This method requires at least two current sensors, and these types of sensors are somewhat expensive. More economical method is measuring DC link current with a simple shunt resistor, then, reconstructing output current using the DC link current value and the switching status. However, in low speed region, the measurement becomes difficult and even impossible due to the requirement of minimum switching duration for A/D conversion. These problems can be overcome by limitation of switching duration. Limitation of switching, however, causes voltage and current distortion. Owing to compensation, distortion can be effectively suppressed. However these increase acoustic noise due to increment of current ripple. In this paper, a current measurement method is proposed, which can reduce minimum switching duration resulting in reduction of acoustic noise. The validity of proposed method is confirmed through experiment.

A Study on the Transient Characteristics in 765kV Untransposed Transmission Systems (765kV 비연가 송전계통 과도 특성에 관한 고찰)

  • 안용진;강상희
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.7
    • /
    • pp.397-404
    • /
    • 2004
  • This paper describes a study of transient characteristics in 765kV untransposed transmission lines. As the 765(kV) system can carry bulk power, some severe fault on the system nay cause large system disturbance. The large shunt capacitance and small resistance of 765kv transmission line make various difficulties for its protection. These problems including current difference between sending and receiving terminals on normal power flow, low order harmonic current component in fault current and current transformer saturation due to the long DC time constant of the circuit etc. must be investigated and solved. The analysis of transient characteristics at sending terminal has been carried out for the single phase to ground fault and 3-phase short fault, etc. The load current, charging current in normal condition and line flows, fault current, THD(Total Harmonic Distortion) of harmonics, time constants have been analysed for the 765kV untransposed transmission line systems.

Verification of Controlled Closing Method for Unearthed Shunt Capacitor Banks by Simulation (비접지 분로 콘덴서 뱅크의 투입제어방식에 대한 시뮬레이션 검증)

  • 이우영;박경엽;정진교;김희진
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.448-453
    • /
    • 2003
  • In this paper the controlled closing algorithm of the circuit breaker for isolated capacitor banks is proposed. The characteristics of circuit breakers such as RDDS(rate of decrease of dielectric strength) and a mechanical operating tolerance should be also taken into account to locate contact touch instants around voltage zero. The analysis results on the voltages across circuit breaker terminals upon closing operation play an important roles to describe the suggested method. The simulations carried out in order to verify the performance of this method show that the closing instants obtained from the proposed method provide a good suppression effect on the closing transients for both single and back-to-back capacitor banks.

Neutral Line Current Compensation Method of Active Power Filter (전력용 능동 필터의 중성선 전류 저감 기법)

  • Min, Joon-Ki;Kim, Hyo-Sung;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.504-506
    • /
    • 2005
  • This paper proposes a new neutral current reduction method using PQR instantaneous power theory on the active power filter, unbalanced nonlinear load condition in three-phase four-wire systems. For reduction of neutral line current, the single phase active power filter is used and its performance is same with the three-phase four-wire active power filter. For fully-digital implementation, ramp comparison PWM method was adopted. Simulation results verify good performance of the proposed current control strategy on the shunt APFs.

  • PDF

Current-Voltage Characterization of Silicon Quantum Dot Solar Cells

  • Kim, Dong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.143-145
    • /
    • 2009
  • The electrical and photovoltaic properties of single junction silicon quantum dot solar cells are investigated. A prototype solar cell with an effective area of 4.7 $mm^2$ showed an open circuit voltage of 394 mV and short circuit current density of 0.062 $mA/cm^2$. A diode model with series and shunt resistances has been applied to characterize the dark current-voltage data. The photocurrent of the quantum-dot solar cell was found to be strongly dependent on the applied voltage bias, which can be understood by consideration of the conduction mechanism of the activated carriers in the quantum dot imbedded material.

Operating properties of superconducting fault current limiters with a sing1e line-to-ground fault in a three-phase system (3상 전력계통의 1선 지락사고에 대한 초전도한류기의 동작특성)

  • 최효상;현옥배;김혜림;황시돌;차상도
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.261-262
    • /
    • 2003
  • We performed unsymmetrical analysis of a single line-to-ground fault in a three-phase system. The current limiting elements were meander type YBCO stripes coated with Au shunt. When the fault occurred, short circuit currents were effectively limited within 1-2 msec after fault instant. The unsymmetrical rate of fault phase was distributed from 6.4 to 1.4 and most of the fault current flowed in the grounding line due to its direct grounding system.

  • PDF

Two-Terminal Numerical Algorithm for Single-Phase Arcing Fault Detection and Fault Location Estimation Based on the Spectral Information

  • Kim, Hyun-Houng;Lee, Chan-Joo;Park, Jong-Bae;Shin, Joong-Rin;Jeong, Sang-Yun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.460-467
    • /
    • 2008
  • This paper presents a new numerical algorithm for the fault location estimation and arcing fault detection when a single-phase arcing ground fault occurs on a transmission line. The proposed algorithm derived in the spectrum domain is based on the synchronized voltage and current samples measured from the PMUs(Phasor Measurement Units) installed at both ends of the transmission lines. In this paper, the algorithm uses DFT(Discrete Fourier Transform) for estimation. The algorithm uses a short data window for real-time transmission line protection. Also, from the calculated arc voltage amplitude, a decision can be made whether the fault is permanent or transient. The proposed algorithm is tested through computer simulation to show its effectiveness.

Digital-Controlled Single-Phase Unified Power Quality Conditioner for Non-linear and Voltage Sensitive Loads

  • Ryoo Hong-Je;Kim Jong-Soo;Kisck Dragos Ovidiu
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.374-381
    • /
    • 2005
  • The ability to provide quality power has become a significant issue in power systems. The main causes of poor power quality are harmonic currents, poor power factor, supply-voltage variations, etc. A technique of achieving both active current distortion compensation, power factor correction and also mitigating the supply-voltage variation (sag or swell) at the load side is presented in this paper. The operation and rating issues of the proposed Single-phase Unified Power Quality Conditioner are also highlighted. To reduce the total cost while simultaneously increasing the performance, the system is fully digitally controlled using the fixed-point TMS320F240 digital signal processor. The performances of the UPQC, which is composed by shunt and series PWM controlled-converters, have been verified on a laboratory prototype.

Direct AC LED Driver for Wide Power Range and Precise Constant Current Regulation

  • Hwang, Minha;Eum, Hyunchul;Yang, Seunguk;Park, Gyumin;Park, Inki
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.522-524
    • /
    • 2018
  • A New Direct AC LED Driver has been proposed for wide output power range and precise constant current regulation using an advanced auto commutation topology. The conventional shunt regulation method provides a stepped input current shape by fixed regulation references in the linear regulator of the each channel, which results in poor current regulation and high THD. The conventional method needs to assign a linear regulator in each LED channel so that the number of linear regulator increases when extending the number of channels especially at high power application. The proposed regulation method can drive multiple switches to regulate each LED channel current by a single amplifier with sinusoidal reference so that large number of LED channel can be simply extended with less BOM cost and low THD is obtained with the accurate current regulation thanks to the sinusoidal input current control in the closed loop control. To confirm the validity of the proposed circuit, theoretical analysis and experimental results from a 20-W LED driver prototype are presented.

  • PDF