• Title/Summary/Keyword: Single Phase Operation

Search Result 488, Processing Time 0.024 seconds

Fast built-in current sensor for $\textrm{I}_{DDQ}$ testing ($\textrm{I}_{DDQ}$ 테스팅을 위한 빠른 재장형 전류감지기)

  • 임창용;김동욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.811-814
    • /
    • 1998
  • REcent research about current testing($\textrm{I}_{DDQ}$ testing) has been emphasizing that $\textrm{I}_{DDQ}$ testing in addition to the logical voltage testing is necessary to increase the fault coverage. The $\textrm{I}_{DDQ}$. testing can detect physical faults other than the classical stuck-at type fault, which affect reliability. One of the most critical issues in the $\textrm{I}_{DDQ}$ testing is to insert a built-in current sensor (BICS) that can detect abnormal static currents from the power supply or to the ground. This paper presents a new BICS for internal current testing for large CMOS logic circuits. The proposed BICS uses a single phase clock to minimize the hardware overhead. It detects faulty current flowing and converts it into a corresponding logic voltage level to make converts it into a corresponding logic voltage level to make it possible to use the conventional voltage testing techniqeus. By using current mirroring technique, the proposed BICS can work at very high speed. Because the proposed BICS almost does not affects normal operation of CUT(circuit under test), it can be used to a very large circuit without circuit partitioning. By altenating the operational modes, a circuit can be $\textrm{I}_{DDQ}$-tested as a kind of self-testing fashion by using the proposed BICS.

  • PDF

A Design of Power System Stabilization for SVC System Using a RVEGA (실 변수 엘피트주의 유전알고리즘을 이용한 SVC 계통의 안정화 장치의 설계)

  • Chung, Hyeng-Hwan;Hur, Dong-Ryol;Lee, Jeong-Phil;Wang, Yong-Peel
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.7
    • /
    • pp.324-332
    • /
    • 2001
  • In this paper, it is suggested that the selection method of parameter of Power System Stabilizer(PSS) with robustness in low frequency oscillation for Static VAR Compensator(SVC) using a Real Variable Elitism Genetic Algorithm(RVEGA). A SVC, one of the Flexible AC Transmission System(FACTS), constructed by a fixed capacitor(FC) and a thyristor controlled reactor(TCR), is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. The proposed PSS parameters are optimized using RVEGA in order to maintain optimal operation of generator under the various operating conditions. To decrease the computational time, real variable string is adopted. To verify the robustness of the proposed method, we considered the dynamic response of generator speed deviation and generator terminal voltage by applying a power fluctuation and three-phase fault at heavy load, normal load and light load. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system.

  • PDF

Design of A 1.8-V CMOS Frequency Synthesizer for WCDMA

  • Lee, Young-Mi;Lee, Ju-Sang;Ju, Ri-A;Jang, Bu-Cheol;Yu, Sang-Dae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1312-1315
    • /
    • 2002
  • This research describes the design of a fully integrated fractional-N frequency synthesizer intended for the local oscillator in IMT-2000 system using 0.18-$\mu\textrm{m}$ CMOS technology and 1.8-V single power supply. The designed fractional-N synthesizer contains following components. Modified charge pump uses active cascode transistors to achieve the high output impedance. A multi-modulus prescaler has modified ECL-like D flip-flop with additional diode-connected transistors for short transient time and high frequency operation. And phase-frequency detector, integrated passive loop filter, LC-tuned VCO having a tuning range from 1.584 to 2.4 ㎓ at 1.8-V power supply, and higher-order sigma-delta modulator are contained. Finally, designed frequency synthesizer provides 5 ㎒ channel spacing with -122.6 dBc/Hz at 1 ㎒ in the WCDMA band and total output power is 28 mW.

  • PDF

The Latest Performance of Galileo Kinematic PPP at DAEJ Reference Station in South Korea

  • Choi, Byung-Kyu;Yoo, Sung-Moon;Roh, Kyoung-Min;Park, Pilho;Park, Jong-Uk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In October 2019, the European Galileo navigation system operates a total of 24 satellites, two of them are in the testing phase. There are enough satellites in operation to enable precise point positioning (PPP) using Galileo signals. The number of visible satellites for Galileo in South Korea is investigated. In addition, to assess the latest performance of the Galileo kinematic PPP, data received at DAEJ reference station from October 1 to October 7, 2019, are analyzed. Galileo kinematic PPP presents some results in two categories, single-frequency PPP (SPPP) and dual-frequency PPP (DPPP). The positioning accuracy for Galileo kinematic SPPP solutions is less than 1 m root mean square (RMS) in all direction components. The Galileo kinematic DPPP achieves the positioning accuracy with an RMS value of less than 7 cm in all direction components. The results show that the latest performance of Galileo kinematic PPP at DAEJ station in South Korea is still relatively poor compared to GPS kinematic PPP. However, the residuals of Galileo code measurements are smaller than those of GPS code measurements.

Modeling of utility interactive photovoltaic system DC-DC converter (태양광 발전 시스템용 DC-DC 컨버터의 모델링)

  • Mun, S.P.;Park, Y.J.;Kim, Y.M.;Kang, W.J.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.215-217
    • /
    • 2002
  • In this paper, a new converter for utility interactive photovoltaic system is proposed, the conventional utility interactive photovoltaic system is composed of a PWM inverter and a DC converter. However, the increased switching loss and the high frequency switching noise become a problem. the control accuracy of the system is made to lower by the dead time of the switching devices. and it becomes a cause of the lower conversion efficiency. In order to resolve those problems, we applied a non- dissipative snubber circuit to a converter, which generates the single phase absolute value of sinusoidal current. the converter consists of two switching devices and one capacitor which constitute a non-dissipative snubber circuit. the proposed circuit is very useful to minimize and increase efficiency, when it is used to an utility interactive photovoltaic system. it is confirmed by simulation that the proposed converter for new photovoltaic system has stable operation and good output.

  • PDF

Development of Prototype Multi-channel Digital EIT System with Radially Symmetric Architecture

  • Oh, Tong-In;Baek, Sang-Min;Lee, Jae-Sang;Woo, Eung-Je;Park, Chun-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.215-221
    • /
    • 2005
  • We describe the development of a prototype multi-channel electrical impedance tomography (EIT) system. The EIT system can be equipped with either a single-ended current source or a balanced current source. Each current source can inject current between any chosen pair of electrodes. In order to reduce the data acquisition time, we implemented multiple digital voltmeters simultaneously acquiring and demodulating voltage signals. Each voltmeter measures a differential voltage between a fixed pair of adjacent electrodes. All voltmeters are configured in a radially symmetric architecture to optimize the routing of wires and minimize cross-talks. To maximize the signal-to-noise ratio, we implemented techniques such as digital waveform generation, Howland current pump circuit with a generalized impedance converter, digital phase-sensitive demodulation, tri-axial cables with both grounded and driven shields, and others. The performance of the EIT system was evaluated in terms of common-mode rejection ratio, signal-to-noise ratio, and reciprocity error. Future design of a more innovative EIT system including battery operation, miniaturization, and wireless techniques is suggested.

Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines (연료 분사 특성이 가솔린 엔진 HC 배출에 미치는 영향)

  • 우영민;배충식;이동원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.8-15
    • /
    • 2003
  • During cold operation, fuel injection in the intake port directly contributes to the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA(Phase-Doppler. Anemometer). A 6-hole injector was found to produce finer spray than single hole injector. Using a purpose-built wall, the wetted fuel was measured, which was mostly affected by wall temperature. HC emissions were measured in a production engine varying coolant temperature$(20~80^{\circ}C)$, also with respect to the different types of injectors. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect by different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

Integrated Sliding-Mode Sensorless Driver with Pre-driver and Current Sensing Circuit for Accurate Speed Control of PMSM

  • Heo, Sewan;Oh, Jimin;Kim, Minki;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1154-1164
    • /
    • 2015
  • This paper proposes a fully sensorless driver for a permanent magnet synchronous motor (PMSM) integrated with a digital motor controller and an analog pre-driver, including sensing circuits and estimators. In the motor controller, a position estimator estimates the back electromotive force and rotor position using a sliding-mode observer. In the pre-driver, drivers for the power devices are designed with a level shifter and isolation technique. In addition, a current sensing circuit measures a three-phase current. All of these circuits are integrated in a single chip such that the driver achieves control of the speed with high accuracy. Using an IC fabricated using a $0.18{\mu}m$ BCDMOS process, the performance was verified experimentally. The driver showed stable operation in spite of the variation in speed and load, a similar efficiency near 1% compared to a commercial driver, a low speed error of about 0.1%, and therefore good performance for the PMSM drive.

Research Trend for Quantum Dot Quantum Computing (양자점 큐비트 기반 양자컴퓨팅의 국외 연구 동향 분석)

  • Baek, Chungheon;Choi, Byung-Soo
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.79-88
    • /
    • 2020
  • Quantum computing is regarded as one of the revolutionary computing technologies, and has attracted considerable attention in various fields, such as finance, chemistry, and medicine. One of the promising candidates to realize fault tolerant quantum computing is quantum dot qubits, due to their expectation of high scalability. In this study, we briefly introduce the international tendencies for quantum dot quantum computing. First, the current status of quantum dot gate operations is summarized. In most systems, over 99% of single qubit gate operation is realized, and controlled-not and controlled-phase gates as 2-qubit entangling gates are demonstrated in quantum dots. Second, several approaches to expand the number of qubits are introduced, such as 1D and 2D arrays and long-range interaction. Finally, the current quantum dot systems are evaluated for conducting quantum computing in terms of their number of qubits and gate accuracies. Quantum dot quantum computing is expected to implement scalable quantum computing. In the noisy intermediate-scale quantum era, quantum computing will expand its applications, enabling upcoming questions such as a fault-tolerant quantum computing architecture and error correction scheme to be addressed.

An Improved Feed-Forward Controller for the Parallel Operation of a Single-Phase PWM Converter in High-Speed Trains (고속철도용 단상 PWM 컨버터의 병렬운전을 위한 개선된 전향제어기)

  • Park, Byoung-Gun;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.226-234
    • /
    • 2010
  • This paper proposes an improved feed-forward controller that calculates the gain value by estimating the changed boost inductance in practical operating condition of transformer. The boost inductance is estimated by the measurement of input current and voltage. The estimated boost inductance is optimized by the least square method. The proposed feed-forward controller can be achieved the robust control through the gain value calculating the estimated boost inductance despite of the changed condition of transformer and can minimize the interference phenomenon by reducing the harmonics of input current. The validity of proposed technique is verified through the simulation and experiment.