• Title/Summary/Keyword: Single Nucleotide Polymorphism Marker

Search Result 166, Processing Time 0.029 seconds

Comparison of the Microsatellite and Single Nucleotide Polymorphism Methods for Discriminating among Hanwoo (Korean Native Cattle), Imported, and Crossbred Beef in Korea

  • Heo, Eun-Jeong;Ko, Eun-Kyung;Seo, Kun-Ho;Chon, Jung-Whan;Kim, Young-Jo;Park, Hyun-Jung;Wee, Sung-Hwan;Moon, Jin-San
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.763-768
    • /
    • 2014
  • The identity of 45 Hanwo and 47 imported beef (non-Hanwoo) samples from USA and Australia were verified using the microsatellite (MS) marker and single nucleotide polymorphism (SNP) methods. Samples were collected from 19 supermarkets located in the city of Seoul and Gyeonggi province, South Korea, from 2009 to 2011. As a result, we obtained a 100% concordance rate between the MS and SNP methods for identifying Hanwoo and non-Hanwoo beef. The MS method presented a 95% higher individual discriminating value for Hanwoo (97.8%) than for non-Hanwoo (61.7%) beef. For further comparison of the MS and SNP methods, blood samples were collected and tested from 54 Hanwoo ${\times}$ Holstein crossbred cattle (first, second, and third generations). By using the SNP and MS methods, we correctly identified all of the first-generation crossbred cattle as non-Hanwoo; in addition, among the second and third generation crossbreds, the ratio identified as Hanwoo was 20% and 10%, respectively. The MS method used in our study provides more information, but requires sophisticated techniques during each experimental process. By contrast, the SNP method is simple and has a lower error rate. Our results suggest that the MS and SNP methods are useful for discriminating Hanwoo from non-Hanwoo breeds.

Development of a single-nucleotide-polymorphism marker for specific authentication of Korean ginseng (Panax ginseng Meyer) new cultivar "G-1"

  • Yang, Dong-Uk;Kim, Min-Kyeoung;Mohanan, Padmanaban;Mathiyalagan, Ramya;Seo, Kwang-Hoon;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • Background: Korean ginseng (Panax ginseng) is a well-known medicinal plant of Oriental medicine that is still in practice today. Until now, a total of 11 Korean ginseng cultivars with unique features to Korean ginseng have been developed based on the pure-line-selection method. Among them, a new cultivar namely G-1 with different agricultural traits related to yield and content of ginsenosides, was developed in 2012. Methods: The aim of this study was to distinguish the new ginseng cultivar G-1 by identifying the unique single-nucleotide polymorphism (SNP) at its 45S ribosomal DNA and Panax quinquefolius region than other Korean ginseng cultivars using multiplex amplification-refractory mutation system-polymerase chain reaction (ARMS-PCR). Results: A SNP at position of 45S ribosomal DNA region between G-1, P. quinquefolius, and the other Korean ginseng cultivars was identified. By designing modified allele-specific primers based on this site, we could specifically identified G-1 and P. quinquefolius via multiplex PCR. The unique primer for the SNP yielded an amplicon of size 449 bp in G-1 cultivar and P. quinquefolius. This study presents an effective method for the genetic identification of the G-1 cultivar and P. quinquefolius. Conclusion: The results from our study shows that this SNP-based approach to identify the G-1 cultivar will be a good way to distinguish accurately the G-1 cultivar and P. quinquefolius from other Korean ginseng cultivars using a SNP at 45S ribosomal DNA region.

Single nucleotide polymorphism-based analysis of the genetic structure of the Min pig conserved population

  • Meng, Fanbing;Cai, Jiancheng;Wang, Chunan;Fu, Dechang;Di, Shengwei;Wang, Xibiao;Chang, Yang;Xu, Chunzhu
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1839-1849
    • /
    • 2022
  • Objective: The study aims to uncover the genetic diversity and unique genetic structure of the Min pig conserved population, divide the nucleus conservation population, and construct the molecular pedigree. Methods: We used KPS Porcine Breeding Chip v1 50K for SNP detection of 94 samples (31♂, 63♀) in the Min pig conserved population from Lanxi breeding Farm. Results: The polymorphic marker ratio (PN), the observed heterozygosity (Ho), and the expected heterozygosity (He) were 0.663, 0.335, and 0.330, respectively. The pedigree-based inbreeding coefficients (FPED) was significantly different from those estimated from runs of homozygosity (FROH) and single nucleotide polymorphism (FSNP) based on genome. The Pearson correlation coefficient between FROH and FSNP was significant (p<0.05). The effective population content (Ne) showed a continuously decreasing trend. The rate of decline was the slowest from 200 to 50 generations ago (r = 0.95), then accelerated slightly from 50 to 5 generations ago (1.40

Single Nucleotide Polymorphism Analysis of the COI Gene in Korean Native Chicken (한국재래닭 COI 유전자의 단일염기다형 분석)

  • Jin, S.D.;Seo, D.W.;Sim, J.M.;Baek, W.K.;Jung, K.C.;Jang, B.K.;Choi, K.D.;Lee, J.H.
    • Korean Journal of Poultry Science
    • /
    • v.36 no.1
    • /
    • pp.85-88
    • /
    • 2009
  • One of the mitochondrial genes, called cytochrome c oxidase I (COI), has been widely used for the species identification (called bio-barcode) in birds. In this study, the bio-barcode has been applied to chicken breeds in Korea whether it also can be used as a molecular marker for breed identification. Data indicated that Korean native chicken has the mixed SNP (single nucleotide polymorphism) patterns between White Leghorn (Layer) and Cornish (Broiler) and ultimately, it can not be used as the marker for breed identification. However, this result indicates the mixed use of the Korean native chicken, since it has been used for dual purpose for producing meat and egg for a long time. In order to use as a marker for species identification, more reliable mitochondrial and/or nuclear DNA markers need to be developed.

Development and Verification of and Single Nucleotide Polymorphism Markers toDetermine Country of Origin of Korean and Chinese Scapharca subcrenata (한국산과 중국산 새꼬막(Scapharca subcrenata)의 원산지 판별을 위한 SNP 마커의 개발 및 검증)

  • Seong Seok Choi;Seung Hyun Yoo;Yong Bae Seo;Jong Oh Kim;Ik Jung Kwon;So Hee Bae;Gun Do Kim
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1025-1035
    • /
    • 2023
  • In this study, we analyzed SNPs that appear between Korean and Chinese Scapharca subcrenata using the nucleotide sequence data of S. subcrenata analyzed by genotyping by sequencing (GBS). To distinguish the country of origin for S. subcrenata in Korean and Chinese, we developed a primer set as single nucleotide polymorphism (SNP) markers for quantitative real-time PCR (qPCR) analysis and validated by sequencing SNPs. A total of 180 samples of S. subcrenata were analyzed by genotyping by sequencing, and 15 candidate SNPs were selected. SNP marker selection for country of origin were identified through real-time qPCR. Insertion 1 and SNP 21 markers showed the most distinct separation between the sequence types as well as the country of origin through qPCR, with the observed amplification patterns matching the expected outcomes.. Additionally, in a blind test conducted by mixing samples of S. subcrenata at random, Insertion 1 showed 74% accuracy, 52% sensitivity, and 96% specificity, and SNP 21 showed 86% accuracy, 79% sensitivity, and 93% specificity. Therefore, the two SNP markers developed are expected to be useful in verifying the authenticity of the country of origin of S. subcrenata when used independently or in combination.

Applied Computational Tools for Crop Genome Research

  • Love Christopher G;Batley Jacqueline;Edwards David
    • Journal of Plant Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.193-195
    • /
    • 2003
  • A major goal of agricultural biotechnology is the discovery of genes or genetic loci which are associated with characteristics beneficial to crop production. This knowledge of genetic loci may then be applied to improve crop breeding. Agriculturally important genes may also benefit crop production through transgenic technologies. Recent years have seen an application of high throughput technologies to agricultural biotechnology leading to the production of large amounts of genomic data. The challenge today is the effective structuring of this data to permit researchers to search, filter and importantly, make robust associations within a wide variety of datasets. At the Plant Biotechnology Centre, Primary Industries Research Victoria in Melbourne, Australia, we have developed a series of tools and computational pipelines to assist in the processing and structuring of genomic data to aid its application to agricultural biotechnology resear-ch. These tools include a sequence database, ASTRA, for the processing and annotation of expressed sequence tag data. Tools have also been developed for the discovery of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) molecular markers from large sequence datasets. Application of these tools to Brassica research has assisted in the production of genetic and comparative physical maps as well as candidate gene discovery for a range of agronomically important traits.

Association of selected gene polymorphisms with thermotolerance traits in cattle - A review

  • Hariyono, Dwi Nur Happy;Prihandini, Peni Wahyu
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1635-1648
    • /
    • 2022
  • Thermal stress due to extreme changes in the thermal environment is a critical issue in cattle production. Many previous findings have shown a decrease in feed intake, milk yield, growth rate, and reproductive efficiency of cattle when subjected to thermal stress. Therefore, selecting thermo-tolerant animals is the primary goal of the efficiency of breeding programs to reduce those adverse impacts. The recent advances in molecular genetics have provided significant breeding advantages that allow the identification of molecular markers in both beef and dairy cattle breeding, including marker-assisted selection (MAS) as a tool in selecting superior thermo-tolerant animals. Single-nucleotide polymorphisms (SNPs), which can be detected by DNA sequencing, are desirable DNA markers for MAS due to their abundance in the genome's coding and non-coding regions. Many SNPs in some genes (e.g., HSP70, HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1) in various breeds of cattle have been analyzed to play key roles in many cellular activities during thermal stress and protecting cells against stress, making them potential candidate genes for molecular markers of thermotolerance. This review highlights the associations of SNPs within these genes with thermotolerance traits (e.g., blood biochemistry and physiological responses) and suggests their potential use as MAS in thermotolerant cattle breeding.

Association between Single Nucleotide Polymorphisms of Fatty Acid Synthase and Fat Deposition in the Liver of the Overfed Goose

  • Wu, Wei;Guo, Xuan;Zhang, Lei;Hu, Dan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1244-1249
    • /
    • 2014
  • Goose fatty liver is one of the most delicious and popular foods in the world, but there is no reliable genetic marker for the early selection and breeding of geese with good liver-producing potential. In our study, one hundred and twenty-four 78-day-old Landes geese bred in Shunda Landes goose breeding farm, Jiutai, Jilin, China were selected randomly. The fatty livers were sampled each week after overfeeding during a three week period. Polymerase chain reaction-single strand conformation polymorphism and DNA sequencing were used to identify single nucleotide polymorphisms (SNPs) of fatty acid synthase (FAS), which is an important enzyme involved in the synthesis of fat under both physiological and pathological conditions. Least-squares correlation was established between these SNPs and fatty liver weight, abdominal fat weight, and intestinal fat weight of the overfed Landes geese, respectively. The results showed that fatty liver weight of geese with EF and FF genotypes (amplified by primer P1) was significantly higher than that of the EE genotype (p<0.05), and liver weight of CD and DD genotypes (amplified by primer P2) was significantly higher than that of the CC genotype (p<0.05). Different genotype combinations showed different liver weights, and from highest to lowest were ABDD, DDEF, DDFF, DDEE, ABEF, ABFF, AADD, and CDEF. Further analysis of DNA sequencing showed that there were two SNPs within the 5' promoter region the FAS gene. The geese of EF and FF genotypes carried a change of T to C, and the geese of CD and DD genotypes carried a change of A to G. The changes of the bases could potentially influence the binding of some transcription factors to this region as to regulate FAS gene. To our knowledge, this is the first report of SNPs found within the 5' promoter region of the Landes goose FAS gene, and our data will provide an insight for early selection of geese for liver production.

Characterization of Single Nucleotide Polymorphisms in 55 Disease-Associated Genes in a Korean Population

  • Lee, Seung-Ku;Kim, Hyoun-Geun;Kang, Jason-J.;Oh, Won-Il;Oh, Berm-Seok;Kwack, Kyu-Bum
    • Genomics & Informatics
    • /
    • v.5 no.4
    • /
    • pp.152-160
    • /
    • 2007
  • Most common diseases are caused by multiple genetic and environmental factors. Among the genetic factors, single nucleotide polymorphisms (SNPs) are common DNA sequence variations in individuals and can serve as important genetic markers. Recently, investigations of gene-based and whole genome-based SNPs have been applied to association studies for marker discovery. However, SNPs are so population-specific that the association needs to be verified. Fifty-five genes and 384 SNPs were selected based on association with disease. Genotypes of 337 SNPs in candidate genes were determined using Illumina Sentrix Array Matrix (SAM) chips by an allele-specific extension method in 364 unrelated Korean individuals. Allelic frequencies of SNPs were compared with those of other populations obtained from the International HapMap database. Minor allele frequencies, linkage disequilibrium blocks, tagSNPs, and haplotypes of functional candidate SNPs in 55 genetic disease-associated genes were provided. Our data may provide useful information for the selection of genetic markers for gene-based genetic disease-association studies of the Korean population.

Study on The Responseness to Oriental Medicine Therapy and Single-Nucleotide Polymorphism in Korean Cerebral Infarction Patients

  • Lee, Se-Yun;Lee, Yoon-Kyoung;Kim, Jae-Su;Lee, Kyung-Min;Jung, Tae-Young;Lim, Seong-Chul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.993-999
    • /
    • 2008
  • Ischemic brain injury such as cerebral infarction is characterized by acute local inflammatory response mediated by cytokines. The mechanism of cytokines involved in cerebral infarction progression are uncompletely revealed yet. We investigated to find out the relationship between single nucleotide polymorphism (SNP) of interleukin 4 receptor(IL4R) and Oriental Medicine therapy efficacy in patients with cerebral infarction for 2 weeks. Oriental Korean Medicine therapies (herbal medicine and acupuncture) were applied daily and motor functions of patients were assessed using the modified cerebral vascular accident (MCVA) scores. Genotyping for IL4R polymorphism was done by pyrosequencing analysis. In IL4R genotypes and the frequency of alleles, there was no significant difference between cerebral infarction patients (n=124) and controls group (n=175). And there was also no significant difference among good and bad responders in cerebral infarction patients. In this study the IL4R genotype might not be the risk factor or a good predictive genetic marker for good and bad responders in cerebral infarction patients in Korean. Further studies including different cytokine genes will be necessary for the exact genetic markers.