• Title/Summary/Keyword: Single Droplet Combustion

Search Result 47, Processing Time 0.021 seconds

An Experimental Study About Interaction of Droplet Array Combustion (액적배열연소의 상호간섭에 관한 실험적 연구)

  • Kim, Heung-Sik;Baek, Seung-Wook;Park, Jun-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1355-1363
    • /
    • 2002
  • An experimental study was conducted to investigate the interaction phenomena of droplet array combustion in ambient environment. The droplet with 1 mm in diameter was supported from an optical fiber and ignited with a hot wire. Combustion lifetimes and burning rate constants were measured for fuel of nheptane according to parameters, which were junction and suspender spacings, and array configuration. Results show that the burning process considerably depends on the initial away configuration. The d$^2$-law is found to be correct when applied to both of the droplets in away and the single droplet. For separation distance of about 5mm, there exists a critical state. So the transition from a merged flame to separated flames occurs and burning velocity is much faster than before. Combustion lifetime of the lower droplet is shorter than that of the upper droplet in the two-dimensional arrays combustion. Burning rate constants of the droplets in arrays are smaller than that of the single droplet, while they become higher as separation distance increases. Combustion lifetimes of the droplets in arrays are longer than that of the single droplet and decrease as separation distance increase. It is concluded that the array configuration and the mergedness of the flame are the most important factors governing multi-droplet combustion.

Experimental Study on Microexplosive Burning of Binary Fuel Droplets (이성분 연료 액적 연소에 관한 실험적 연구)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.110-119
    • /
    • 2005
  • The combustion characteristics of binary component single droplets hanging at the tip of a quartz fiber are studied experimentally at different environmental pressures and temperatures under normal gravity. Normal Heptane and Normal Hexadecane are selected as two fuels with high difference in boiling temperatures. A falling electrical furnace in a high pressure vessel has provided high temperature environment. Nitrogen and air have formed the environment to study evaporation and combustion, respectively. The initial diameter of droplet was ranging from 1.1 to 1.3 mm. The evaporation and combustion processes were recorded by a high speed digital camera. Some characteristics of droplet burning under different environment conditions and different droplet composition have been investigated. Microexplosion of droplet take places under atmospheric pressure. Bubble formation and its consequent result, incomplete droplet disintegration which presents in all binary compositions, do not appear at high pressure. The initiation of combustion, always takes place in the bottom of droplet due to buoyancy effect of relatively cold fuel vapor. Also, the burning of binary droplet produces soot when the pressure is high.

  • PDF

An Experimental Study on the Sound Level Intensity Characteristics for Combustion of Single Droplet Emulsified Fuels (유화단일액적의 연소에 관한 소음 특성 연구)

  • Cho, Seong-Cheol;Oh, Yang-Hwan;Im, Seok-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.492-499
    • /
    • 2014
  • The objectives of this study was to examine experimentally the microexplosion phenomena of single droplet W/O(water-in-oil) type emulsified fuel. Also, measured the combustion characteristics of single droplet emulsified fuel for microexplosion phenomena in atmospheric pressure condition. The larger quantity of adding water makes microexplosion phenomenon with higher intensity of sound level, because larger water droplet has better coalescence for emulsified fuel. The small quantity of adding water makes puffing with lower sound level intensity. In latter period of extinction, large size droplet of the emulsified fuel breaks down rapidly to small size droplet, and microexplosion phenomenon occurs with multi step combustion.

Experimental Study on Evaporation and Combustion Characteristics of Fuel Droplet with Carbon Nano-particle in RCM (급속압축장치에서 탄소 나노입자가 첨가된 연료 액적의 증발 및 연소 특성에 관한 실험적 연구)

  • Ahn, Hyeongjin;Won, Jonghan;Beak, Seungwook;Kim, Hyemin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.209-211
    • /
    • 2015
  • Evaporation characteristics of a single droplet of carbon nanofluids were investigated in a rapid compression machine(RCM). n-Heptane and carbon black N990 were used to synthesize the carbon nanofluids. RCM is an experimental set-up to simulate a single compression stroke of reciprocating engine. Temperature and pressure in a reaction chamber were measured during the compression stroke. After the piston reaches top dead center(TDC), temperature and pressure decreased due to the heat loss at wall. In that process, a single droplet of carbon nanofluids underwent unsteady condition. A single droplet was put at the center of reaction chamber. Thermocouple whose tip is $50{\mu}m$ was used not only to measure transient bulk temperature, but also to suspend the droplet. The picture of single droplet was taken using high speed camera with a frame rate of 500 fps. From those pictures, the droplet diameter was measured by visual basic program.

  • PDF

An Experimental Study on the Combustion Behavior of Single Coal-Water Slurry Droplet (석탄-물 혼합물 단일액적의 연소 특성에 관한 실험적 연구)

  • 채재우;조용철;전영남;한영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2159-2168
    • /
    • 1992
  • Coal-water slurry is considered to have the potential for displacing petroleum used in the existing oil-fired industrial and utility boilers. The combustion of coal-water slurry(CWS) is a complex process and little is known about the detailed mechanism. In this paper the combustion behavior of a single suspended droplet of CWS in hot gas stream was investigated. The effect of coal particle size, water content in droplet, initial droplet size, ambient temperature and oxygen fraction in ambient gas were studied. The results are as follows; (1) Increasing the oxygen fraction in ambient gas considerably reduced the char combustion time. (2) The variation of water content and coal particle size in droplet showed little effect on the combustion behavior. (3) In the relatively high temperature ambient gas, the water evaporation time became shorter and the combustion process was stable.

Combustion Characteristics of Spherical Droplet in Turbulent Flow Field (난류 유동장 내 구형 액적의 연소특성)

  • Cho, Chong-Pyo;Kim, Ho-Young;Yoon, Suk-Goo
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.132-137
    • /
    • 2005
  • The burning characteristics of interacting spherical droplet in a turbulent flow are numerically investigated. The transient combustion of 3-dimensionally arranged droplets, both the fixed streamwise droplet distances of 3 radii and 10 radii and different turbulence intensities, is studied. The results obtained from the present numerical analysis show that droplet vaporization rate for heptane droplet is insensitive to turbulence intensity, and that the transient flame configuration and retardation of droplet surface temperature augmentation with streamwise droplet spacing substantially influence vaporization process of interacting droplets. Single flame mode in which individual flames are merged into single flame, with decreasing streamwise droplet spacing, becomes faster. Therefore, vaporization rate of the second droplet with decreasing streamwise droplet spacing decreases remarkably with flame movement.

  • PDF

Combustion Characteristics of a 1-Butanol Gel Fuel Droplet in Atmospheric Pressure Condition (상압조건에서 1-부탄올 젤 연료액적의 연소특성)

  • Nam, Siwook;Kim, Hyemin
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.120-126
    • /
    • 2021
  • Combustion characteristics of a 1-butanol gel fuel were studied in atmospheric pressure condition. The butanol gel fuel was manufactured by adding hydroxypropyl-methyl cellulose (HPMC) as a gellant and the effect of the gellant concentration was observed. The combustion process of a single butanol gel droplet was divided into 3 stages including droplet heating, microexplosion, and gellant combustion. The flame was distorted compared to butanol + water mixture because of micro-explosion during the combustion. Increase of gellant concentration delayed the droplet ignition, but the combustion rate was improved due to the mass ejection during the micro-explosion.

Study on Combustion Characteristics of Diesel Fuel and Low Quality Oil Droplet with Additive Oxygenate and Paraffin (함산소계 및 파라핀계 혼합 경유 및 저질유 액적의 연소특성에 관한 연구)

  • Kim Bong-Seock;Ogawa Hideyuki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.552-561
    • /
    • 2006
  • The single droplet combustion characteristics of diesel fuel and low quality oil with additive oxygenate and paraffin under high ambient temperature and atmospheric pressure were investigated in the study. The results of the study may are concluded as follows: In the combustion of diesel fuel and low quality oil droplet with additive of oxygenate and paraffin. the dimensionless droplet size of $(D/Do)^2$ was linearly decreased with time. A fuel droplet with low boiling temperature additives and in high boiling temperature base fuel evaporates and burns faster than usual base fuel. Especially. these trends were remarkably obtained by decreasing boiling point and increasing blending contents of additives in case of oxygenated agents rather than n-paraffin agents. This rapid burning may result from so-called 'micro-explosion' and its burning intensity varies with the types of additives. The results above may suggest that rapid evaporation of oxygenate additive in the middle stage of combustion can contribute much to combustion improvement of blended fuels.

Study on the Combustion Characteristics of Methanol Fuel Droplet (Methanol 연료 액적의 연소 특성에 관한 연구)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet burning, extinction process and flame behavior of methanol fuel and improve the ability of theoretical prediction of these phenomena. For the improved understanding of these phenomena, this paper presents the experimental results on the methanol droplet combustion conducted under various initial droplet diameters ($d_0$), ambient pressure ($P_{amb}$), and oxygen concentration ($O_2$) conditions. To achieve this, the experimental study was conducted in terms of burning rate (K) with normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

Experimental Study on the Soot Formation Behavior of Octane Single Fuel Droplet Under the Constant Volume Combustion Conditions (정적 연소 조건에서 Octane 단일 연료 액적의 매연 생성 거동에 관한 연구)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.389-395
    • /
    • 2017
  • This study was performed to provide the information of the soot formation behavior of octane single fuel droplet under the identical combustion conditions. To achieve this, this experimental study provide the results of the soot formation characteristics of octane droplet in accordance with different initial droplet diameter($d_0$), at the same time, experiment was conducted under the same combustion conditions which are 1.0atm of ambient pressure($P_{amb}$), 21% of oxygen concentration($O_2$) and 79% of nitrogen concentration($N_2$). Visualization of octane droplet combustion was performed by visualization system with high speed camera. The results of maximum soot volume fraction($f_{vmax}$) was almost the same under the equivalent ambient conditions regardless of initial droplet diameter. Furthermore, maximum soot volume fraction was showed the higher value in the measuring direction between $135^{\circ}$ and $315^{\circ}$ since the soot-tail is generated during two opposing igniters movement process.