• 제목/요약/키워드: Single Die

검색결과 197건 처리시간 0.027초

중공품 성형시 삼중관의 액압성형성에 미치는 압력경로의 영향 (Effect of Loading Path on the Hydroformability of a Three-layered Tube for Fabrication of a Hollow Part)

  • 한상욱;김상윤;주병돈;문영훈
    • 소성∙가공
    • /
    • 제22권1호
    • /
    • pp.17-22
    • /
    • 2013
  • Tube hydroforming is a technology that utilizes hydraulic pressure to form a tube into desired shapes inside die cavities. Due to its advantages, such as weight reduction, increased strength, improved quality, and reduced tooling cost, single-layered tube hydroforming is widely used in industry. However in some special applications, it is necessary to produce multi-layered tubular components which have corrosion resistance, thermal resistance, conductivity, and abrasion resistance. In this study, a hollow forming process to fabricate a part from multi-layered tubes for structural purposes is proposed. To accomplish a successful hydroforming process, an analytical model that predicts optimal load path for various parameters such as tube material properties, thickness of tubes, diameter of holes and the number of holes was developed. Tubular hydroforming experiments to fabricate a hollow part were performed and the optimal loading path developed by the analytical model was successfully verified. The results show that the proposed hydroforming process can effectively produce hollow parts with multi-layered tube without defects such as wrinkling or fracture.

Alloy Wheel용 저압 주조 A356-T6 합금의 기계적 특성 (Mechanical Properties of Low-Pressure Die Cast A356-T6 alloys for Automotive Wheels)

  • 유봉준;김정호;윤형석;어순철
    • 한국주조공학회지
    • /
    • 제34권1호
    • /
    • pp.6-13
    • /
    • 2014
  • The mechanical properties of low-pressure die cast (LPDC) A356-T6 automotive road wheels are evaluated and correlated with their corresponding microstructures. In this study, two types of alloy wheels processed using different LPDC gating system are investigated. The yield stress, tensile stress, and elongation values tested at room temperature are correlated with the secondary dendrite arm spacing (SDAS) with respect to the gating system, and are also compared with similar studies. The SDAS and precipitates are examined using optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy. The phase information is also investigated using X-ray diffraction. Charpy impact tests are also performed from $-100^{\circ}C$ to $200^{\circ}C$, and the fracture surfaces are examined using SEM. The impact energy is demonstrated to increase with increasing temperatures without exhibiting specific transition behaviors as in other nonferrous alloys. The fracture toughness is also evaluated using three point bend test with single-edged bend specimens. The obtained fracture toughness values are in good agreement with those in similar studies.

테일러드 도어인너 패널의 현장 트라이아웃 (Field Try-out of Tailored Door Inner Panel)

  • 이종문;김상주;금영탁
    • 소성∙가공
    • /
    • 제10권3호
    • /
    • pp.193-199
    • /
    • 2001
  • Forming more than two parts of sheet metal in a single stamping operation lowers production costs, reduces weight, and heightens dimensional accuracy. The tailored blank (TB) is a laser-welded or mash-seam-welded sheet metal with different thicknesses, different strengths, or different coatings. Recently, automotive manufacturers have been interested in tailored blanks because of their desire to improve the rigidity, weight reduction, crash durability, and cost savings. Therefore the application to auto-bodies has increased. However, as tailored blanks do not behave like un-welded blanks in press forming operations, stamping engineers no longer rely on conventional forming techniques. Field try-outs are very important manufacturing processes for an economic die-making. In the field try-outs, the rounded geometries of tool and the drawbead shape and size in die face are generally modified when the forming defects can not be removed by the adjustment of forming process parameters. In this study, the field try-outs of tailored door inner panel are introduced and evaluated. The behaviours of laser tailored blank associated with different thickness combinations in the forming process of door inner panel are described focusing on terms of experimental investigations on the formability.

  • PDF

Ti-6Al-4V 소형 날개형상의 항온단조 공정 및 금형설계 (Process and die designs for isothermal forging of the small-scale Ti-6Al-4V wing shape)

  • 염종택;박노광;이유환;신태진;홍성석;심인옥;황상무;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.114-117
    • /
    • 2004
  • The isothermal forging design of a Ti-6Al-4V wing shape was performed by 3D FE simulation. The design focuses on near-net shape forming by the single stage. The process variables such as the die design, pre-form shape and size, ram speed and forging temperature were investigated. The minimization of forging load and uniform strain distribution in a given forging condition were considered as main design factors. The FE simulation results fur the final process design were compared with the isothermal forging tests. Finally, the modified process design for producing the uniform Ti-6Al-4V wing product without forming defects was suggested.

  • PDF

유동 및 응고 시뮬레이션을 활용한 회전자 패밀리 금형의 오버플로우 설계 방안 (Overflow Design Methods of Family Mold for Rotor Using the Flow and Solidification Simulation)

  • 정재민;김창완;;이경민;국중민;진현기;홍성길
    • 한국주조공학회지
    • /
    • 제33권5호
    • /
    • pp.204-209
    • /
    • 2013
  • The family mold casting have advantages which are able to make products with different shapes and dimensions simultaneously in a single mold. In this study, the design of the 4 cavity rotor family mold was used by "Anycasting" software, the defects occurred during die casting were predicted and suggested the best optimization conditions for sound products. The result of the experiment were that the optimum overflow design was needed for gas emission and control of residual oxides. It was clear that the defects positions formed by diecasting were agreed with nearly them predicted by simulation.

파우치 포장 장비의 변형량 및 응력해석 (Deformation and stress analysis of Vertical form-fill-seal machine)

  • 백승엽;최승건;정연승;장영주
    • Design & Manufacturing
    • /
    • 제10권1호
    • /
    • pp.46-50
    • /
    • 2016
  • Beverage industry is the largest in the domestic packaging market. Usually, beverage is packed in palstic, glass, can and paper bags. However, the cost of these packaging methods are very high and the recycling are not easy to handle. Pouch packaging method is one of the packaging method to solve the drawbacks of former beverage containers. The pouch packaging methods are difficult to control, it requires a number of processes. A vertical form-fill-seal machine which is self-developed is the capable of processing in a single apparatus. In this paper, in order to develop a pouch equipment, the structure analysis was carried out for the main unit. The stress and deformation of feed unit which removes the air inside the pouch while feeding down has been analyzed. It receives the greatest impact from the rolling part. And also, the sealing unit has been analyzed. The analysis result shows that the stress and the deformation was slight to be applicable to the actual system.

와이어 본더에서의 초저 루프 기술 (The Low Height Looping Technology for Multi-chip Package in Wire Bonder)

  • 곽병길;박영민;국성준
    • 반도체디스플레이기술학회지
    • /
    • 제6권1호
    • /
    • pp.17-22
    • /
    • 2007
  • Recent new packages such as MCP(Multi-Chip Package), QDP(Quadratic Die Package) and DDP(Dual Die Package) have stack type configuration. This kind of multi-layer package is thicker than single layer package. So there is need for the low height looping technology in wirebonder to make these packages thinner. There is stiff zone above ball in wirebonder wire which is called HAZ(Heat Affect Zone). When making low height loop (below $80\;{\mu}m$) with traditional forward loop, stiff wire in HAZ(Heat Affected Zone) above ball is bended and weakened. So the traditional forward looping method cannot be applied to low height loop. SSB(stand-off stitch) wire bonding method was applied to many packages which require very low loops. The drawback of SSB method is making frequent errors at making ball, neck damage above ball on lead and the weakness of ball bonding on lead. The alternative looping method is BNL(ball neckless) looping technology which is already applied to some package(DDP, QDP). The advantage of this method is faster in bonding process and making little errors in wire bonding compared with SSB method. This paper presents the result of BNL looping technology applied in assembly house and several issues related to low loop height consistence and BNL zone weakness.

  • PDF

반도체 Sub-Fab 용 웨지 마운트 레벨러(Wdge Mount Leveler)의 마찰과 응력에 관한 연구 (A study on friction and stress analysis of wedge mount leveler in Semi-Conductor Sub-Fab)

  • 민경호;송기혁;홍광표
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.25-28
    • /
    • 2017
  • Semiconductor equipment manufacturers desire to enhance efficiency of Sub Fab to increase semiconductor productivity. For this reason, Sub Fab equipment manufacturers are developing Integrated System that combined modules with multiple facilities. Integrated System is required to apply Mount Leveler of Wedge Type in compliance with weight increase compared with existing single equipment and product shape change. This thesis analyzes main design variables of components of Wedge Mount Leveler and carries out structure analysis using ANSYS, finite element analysis program Analysis shows that main design variables of components of Wedge Mount Leveler has self-locking condition by friction force of Wedge and adjusting bolt. Each friction force hinges upon Wedge angle and Friction Coefficient of contact surface and upon the thread angle and Friction Coefficient of contact surface. Also, as a result of carrying out structure analysis of Wedge Mount Leveler, deflection and stress appears in different depending on the height of the level.

전단-신선 가공된 6063 알루미늄 합금의 변형거동 (Deformation Behavior of 6063 Al Alloy Deformed by Shear-Drawing Method)

  • 고영건;이병욱;신동혁
    • 대한금속재료학회지
    • /
    • 제49권4호
    • /
    • pp.291-297
    • /
    • 2011
  • This work investigated the microstructure and mechanical properties of 6063 Al alloy fabricated by shear-drawing (SD) technique where shear and drawing strains were combined together within a predetermined die. To find the optimum condition for sound deformation, three different dies having different inner angle and diameter of the exit channel were prepared. After single deformation of the present sample, the sound deformation took place without an abrupt failure of the sample if the inner angle would be greater than $135^{\circ}$ in this study, when the channel diameter of the SD die was reduced from 10 to 9 mm. Microstructural observation showed that the inner angle of $135^{\circ}$ was found to be more effective than that of $150^{\circ}$ in terms of the alignment of each grain to the shear direction imposed by SD method. In addition, the yield strength of the SD-deformed sample was twice higher than that of the initial counterpart while loosing ductility in tension.

Full CMOS Single Supply PLC SoC ASIC with Integrated Analog Front-End

  • Nam, Chul;Pu, Young-Gun;Kim, Sang-Woo;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제9권2호
    • /
    • pp.85-90
    • /
    • 2009
  • This paper presents a single supply PLC SoC ASIC with a built-in analog Front-end circuit. To achieve the low power consumption along with low cost, this PLC SoC employs fully CMOS Analog Front End (AFE) and several LDO regulators (LDOs) to provide the internal power for Logic Core, DAC and Input/output Pad driver. The receiver part of the AFE consists of Pre-amplifier, Gain Amplifier and 1 bit Comparator. The transmitter part of the AFE consists of 10 bit Digital Analog Converter and Line Driver. This SoC is implemented with 0.18 ${\mu}m$ 1 Poly 5 Metal CMOS Process. The single supply voltage is 3.3 V and the internal powers are provided using LDOs. The total power consumption is below 30 mA at stand-by mode to meet the Eco-Design requirement. The die size is 3.2 $\times$ 2.8 $mm^{2}$.