• Title/Summary/Keyword: Single Depth Image Estimation

Search Result 34, Processing Time 0.027 seconds

Real-time Human Pose Estimation using RGB-D images and Deep Learning

  • Rim, Beanbonyka;Sung, Nak-Jun;Ma, Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.113-121
    • /
    • 2020
  • Human Pose Estimation (HPE) which localizes the human body joints becomes a high potential for high-level applications in the field of computer vision. The main challenges of HPE in real-time are occlusion, illumination change and diversity of pose appearance. The single RGB image is fed into HPE framework in order to reduce the computation cost by using depth-independent device such as a common camera, webcam, or phone cam. However, HPE based on the single RGB is not able to solve the above challenges due to inherent characteristics of color or texture. On the other hand, depth information which is fed into HPE framework and detects the human body parts in 3D coordinates can be usefully used to solve the above challenges. However, the depth information-based HPE requires the depth-dependent device which has space constraint and is cost consuming. Especially, the result of depth information-based HPE is less reliable due to the requirement of pose initialization and less stabilization of frame tracking. Therefore, this paper proposes a new method of HPE which is robust in estimating self-occlusion. There are many human parts which can be occluded by other body parts. However, this paper focuses only on head self-occlusion. The new method is a combination of the RGB image-based HPE framework and the depth information-based HPE framework. We evaluated the performance of the proposed method by COCO Object Keypoint Similarity library. By taking an advantage of RGB image-based HPE method and depth information-based HPE method, our HPE method based on RGB-D achieved the mAP of 0.903 and mAR of 0.938. It proved that our method outperforms the RGB-based HPE and the depth-based HPE.

Enhancing Single Thermal Image Depth Estimation via Multi-Channel Remapping for Thermal Images (열화상 이미지 다중 채널 재매핑을 통한 단일 열화상 이미지 깊이 추정 향상)

  • Kim, Jeongyun;Jeon, Myung-Hwan;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.314-321
    • /
    • 2022
  • Depth information used in SLAM and visual odometry is essential in robotics. Depth information often obtained from sensors or learned by networks. While learning-based methods have gained popularity, they are mostly limited to RGB images. However, the limitation of RGB images occurs in visually derailed environments. Thermal cameras are in the spotlight as a way to solve these problems. Unlike RGB images, thermal images reliably perceive the environment regardless of the illumination variance but show lacking contrast and texture. This low contrast in the thermal image prohibits an algorithm from effectively learning the underlying scene details. To tackle these challenges, we propose multi-channel remapping for contrast. Our method allows a learning-based depth prediction model to have an accurate depth prediction even in low light conditions. We validate the feasibility and show that our multi-channel remapping method outperforms the existing methods both visually and quantitatively over our dataset.

Deep Learning-based Depth Map Estimation: A Review

  • Abdullah, Jan;Safran, Khan;Suyoung, Seo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.1-21
    • /
    • 2023
  • In this technically advanced era, we are surrounded by smartphones, computers, and cameras, which help us to store visual information in 2D image planes. However, such images lack 3D spatial information about the scene, which is very useful for scientists, surveyors, engineers, and even robots. To tackle such problems, depth maps are generated for respective image planes. Depth maps or depth images are single image metric which carries the information in three-dimensional axes, i.e., xyz coordinates, where z is the object's distance from camera axes. For many applications, including augmented reality, object tracking, segmentation, scene reconstruction, distance measurement, autonomous navigation, and autonomous driving, depth estimation is a fundamental task. Much of the work has been done to calculate depth maps. We reviewed the status of depth map estimation using different techniques from several papers, study areas, and models applied over the last 20 years. We surveyed different depth-mapping techniques based on traditional ways and newly developed deep-learning methods. The primary purpose of this study is to present a detailed review of the state-of-the-art traditional depth mapping techniques and recent deep learning methodologies. This study encompasses the critical points of each method from different perspectives, like datasets, procedures performed, types of algorithms, loss functions, and well-known evaluation metrics. Similarly, this paper also discusses the subdomains in each method, like supervised, unsupervised, and semi-supervised methods. We also elaborate on the challenges of different methods. At the conclusion of this study, we discussed new ideas for future research and studies in depth map research.

Single Camera Based Robot Localization (단일카메라기반의 로봇 위치추정)

  • Yi, Chong-Ho;Ahn, Chang-Hwan;Park, Chang-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1173-1174
    • /
    • 2008
  • In this paper, we propose a front-mounted single camera based depth estimation and robot localization method. The advantage of front-mounted camera is reduction of redundancy when the robot move. The robot computes depth information of captured image, moving around. And the robot location is corrected by depth information.

  • PDF

Single Image Dehazing Based on Depth Map Estimation via Generative Adversarial Networks (생성적 대립쌍 신경망을 이용한 깊이지도 기반 연무제거)

  • Wang, Yao;Jeong, Woojin;Moon, Young Shik
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.43-54
    • /
    • 2018
  • Images taken in haze weather are characteristic of low contrast and poor visibility. The process of reconstructing clear-weather image from a hazy image is called dehazing. The main challenge of image dehazing is to estimate the transmission map or depth map for an input hazy image. In this paper, we propose a single image dehazing method by utilizing the Generative Adversarial Network(GAN) for accurate depth map estimation. The proposed GAN model is trained to learn a nonlinear mapping between the input hazy image and corresponding depth map. With the trained model, first the depth map of the input hazy image is estimated and used to compute the transmission map. Then a guided filter is utilized to preserve the important edge information of the hazy image, thus obtaining a refined transmission map. Finally, the haze-free image is recovered via atmospheric scattering model. Although the proposed GAN model is trained on synthetic indoor images, it can be applied to real hazy images. The experimental results demonstrate that the proposed method achieves superior dehazing results against the state-of-the-art algorithms on both the real hazy images and the synthetic hazy images, in terms of quantitative performance and visual performance.

Boundary Depth Estimation Using Hough Transform and Focus Measure (허프 변환과 초점정보를 이용한 경계면 깊이 추정)

  • Kwon, Dae-Sun;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.78-84
    • /
    • 2015
  • Depth estimation is often required for robot vision, 3D modeling, and motion control. Previous method is based on the focus measures which are calculated for a series of image by a single camera at different distance between and object. This method, however, has disadvantage of taking a long time for calculating the focus measure since the mask operation is performed for every pixel in the image. In this paper, we estimates the depth by using the focus measure of the boundary pixels located between the objects in order to minimize the depth estimate time. To detect the boundary of an object consisting of a straight line and a circle, we use the Hough transform and estimate the depth by using the focus measure. We performed various experiments for PCB images and obtained more effective depth estimation results than previous ones.

SINGLE PANORAMA DEPTH ESTIMATION USING DOMAIN ADAPTATION (도메인 적응을 이용한 단일 파노라마 깊이 추정)

  • Lee, Jonghyeop;Son, Hyeongseok;Lee, Junyong;Yoon, Haeun;Cho, Sunghyun;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.3
    • /
    • pp.61-68
    • /
    • 2020
  • In this paper, we propose a deep learning framework for predicting a depth map of a 360° panorama image. Previous works use synthetic 360° panorama datasets to train networks due to the lack of realistic datasets. However, the synthetic nature of the datasets induces features extracted by the networks to differ from those of real 360° panorama images, which inevitably leads previous methods to fail in depth prediction of real 360° panorama images. To address this gap, we use domain adaptation to learn features shared by real and synthetic panorama images. Experimental results show that our approach can greatly improve the accuracy of depth estimation on real panorama images while achieving the state-of-the-art performance on synthetic images.

SuperDepthTransfer: Depth Extraction from Image Using Instance-Based Learning with Superpixels

  • Zhu, Yuesheng;Jiang, Yifeng;Huang, Zhuandi;Luo, Guibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4968-4986
    • /
    • 2017
  • In this paper, we primarily address the difficulty of automatic generation of a plausible depth map from a single image in an unstructured environment. The aim is to extrapolate a depth map with a more correct, rich, and distinct depth order, which is both quantitatively accurate as well as visually pleasing. Our technique, which is fundamentally based on a preexisting DepthTransfer algorithm, transfers depth information at the level of superpixels. This occurs within a framework that replaces a pixel basis with one of instance-based learning. A vital superpixels feature enhancing matching precision is posterior incorporation of predictive semantic labels into the depth extraction procedure. Finally, a modified Cross Bilateral Filter is leveraged to augment the final depth field. For training and evaluation, experiments were conducted using the Make3D Range Image Dataset and vividly demonstrate that this depth estimation method outperforms state-of-the-art methods for the correlation coefficient metric, mean log10 error and root mean squared error, and achieves comparable performance for the average relative error metric in both efficacy and computational efficiency. This approach can be utilized to automatically convert 2D images into stereo for 3D visualization, producing anaglyph images that are visually superior in realism and simultaneously more immersive.

Enhancing 3D Excavator Pose Estimation through Realism-Centric Image Synthetization and Labeling Technique

  • Tianyu Liang;Hongyang Zhao;Seyedeh Fatemeh Saffari;Daeho Kim
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1065-1072
    • /
    • 2024
  • Previous approaches to 3D excavator pose estimation via synthetic data training utilized a single virtual excavator model, low polygon objects, relatively poor textures, and few background objects, which led to reduced accuracy when the resulting models were tested on differing excavator types and more complex backgrounds. To address these limitations, the authors present a realism-centric synthetization and labeling approach that synthesizes results with improved image quality, more detailed excavator models, additional excavator types, and complex background conditions. Additionally, the data generated includes dense pose labels and depth maps for the excavator models. Utilizing the realism-centric generation method, the authors achieved significantly greater image detail, excavator variety, and background complexity for potentially improved labeling accuracy. The dense pose labels, featuring fifty points instead of the conventional four to six, could allow inferences to be made from unclear excavator pose estimates. The synthesized depth maps could be utilized in a variety of DNN applications, including multi-modal data integration and object detection. Our next step involves training and testing DNN models that would quantify the degree of accuracy enhancement achieved by increased image quality, excavator diversity, and background complexity, helping lay the groundwork for broader application of synthetic models in construction robotics and automated project management.

3D Surface Reconstruction by Combining Focus Measures through Genetic Algorithm (유전 알고리즘 기반의 초점 측도 조합을 이용한 3차원 표면 재구성 기법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.23-28
    • /
    • 2014
  • For the reconstruction of three-dimensional (3D) shape of microscopic objects through shape from focus (SFF) methods, usually a single focus measure operator is employed. However, it is difficult to compute accurate depth map using a single focus measure due to different textures, light conditions and arbitrary object surfaces. Moreover, real images with diverse types of illuminations and contrasts lead to the erroneous depth map estimation through a single focus measure. In order to get better focus measurements and depth map, we have combined focus measure operators by using genetic algorithm. The resultant focus measure is obtained by weighted sum of the output of various focus measure operators. Optimal weights are obtained using genetic algorithm. Finally, depth map is obtained from the refined focus volume. The performance of the developed method is then evaluated by using both the synthetic and real world image sequences. The experimental results show that the proposed method is more effective in computing accurate depth maps as compared to the existing SFF methods.