• Title/Summary/Keyword: Single Chamber

Search Result 457, Processing Time 0.026 seconds

Combustion Characteristics of Single Droplet of Diesel with Bio-diesel for Their Mixing Ratios and Sizes (경유와 바이오 디젤 액적의 혼합비율과 크기에 따른 연소특성)

  • Jeong, Man-Seok;Lee, Kyung-Hwan
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • The combustion characteristics of a single droplet of diesel and bio-diesel have been investigated experimentally with varying droplet size, ambient temperature and compound ratio in a high temperature chamber. The fuels used were diesel with bio-diesel contents varied from 0% to 100%. Each experiment has been performed from 970K to 1070K by 50K intervals. Imaging with a high-speed digital camera was adopted to measure the ignition delay and flame life-time, as well as to observe micro-explosion behavior. The increase of droplet size and decrease of furnace temperature cause an increase of the ignition delay time. As the bio-diesel content decreases, the ignition delay increases and the micro-explosion behavior is strengthened. It is also confirmed that the full combustion time decreases as the micro-explosion occurred.

Estimation of Soil Erosion and Sediment Yield in Mountainous Stream (산지형 하천의 토양침식 및 토사유출량 산정)

  • Ko, Jae-Wook;Yang, Sung-Kee;Yang, Won-Seok;Jung, Woo-Yeol;Park, Cheol-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.599-608
    • /
    • 2013
  • Jeju island, which is located along the moving path of typhoon, suffers from flooding and overflow by torrential rain. So abrupt runoff occurring, damages of downstream farm field and shore culturing farms are increasing. In this study, Oaedo stream, one of the mountainous streams on Jeju island, was selected as the basin of study subject and was classified into 3 sub-basins, and after the characteristics of subject basin, the soil erosion amount and the sediment delivery of the stream by land usage distribution were estimated with the use of SATEEC ArcView GIS, the sediment yield amount of 2000 and 2005 was analyzed comparatively. As a result of estimating the sediment yield amount of 2000, the three sub-basins were respectively 12,572.7, 14,080 and 157,761 tons/year. and sediment yield amounts were estimated as 35,172.9, 5,266 and 258,535 tons/year respectively in 2005. The soil erosion and sediment yield amount of 2005 using single storm rainfall were estimated high compared with 2000, but for sub-basin 2, the values rather decreased due to changes in land use, and the land coverage of 2005, since there are many classifications of land usage compared with 2000, enabling to reflect more accurate land usage condition, could deduce appropriate results. It is anticipated that such study results can be utilized as basic data to propose a direction to predict the amount of sediment yield that causes secondary flooding damage and deteriorates water quality within detention pond and grit chamber, and take action against damages in the downstream farm field and shore culturing farms.

Growth characteristics of single-crystalline 6H-SiC homoepitaxial layers grown by a thermal CVD (화학기상증착법으로 성장시킨 단결정 6H-SiC 동종박막의 성장 특성)

  • 장성주;설운학
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.5-12
    • /
    • 2000
  • As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides (SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single- crystalline 6H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 6H-SiC homoepitaxial layers using a SiC-uncoated graphite susceptor that utilized Mo-plates was obtained. The CVD growth was performed in an RF-induction heated atmospheric pressure chamber and carried out using off-oriented ($3.5^{\circ}$tilt) substrates from the (0001) basal plane in the <110> direction with the Si-face side of the wafer. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, transmittance spectra, Raman spectroscopy, XRD, Photoluninescence (PL) and transmission electron microscopy (TEM) were utilized. The best quality of 6H-SiC homoepitaxial layers was observed in conditions of growth temperature $1500^{\circ}C$ and C/Si flow ratio 2.0 of $C_3H_8$ 0.2 sccm & $SiH_4$ 0.3 sccm.

  • PDF

Endodontic treatment of mandibular molar with root dilaceration using Reciproc single-file system

  • Meireles, Daniely Amorin;Bastos, Mariana Mena Barreto;Marques, Andre Augusto Franco;Garcia, Lucas Da Fonseca Roberti;Sponchiado, Emilio Carlos Junior
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.3
    • /
    • pp.167-171
    • /
    • 2013
  • Biomechanical preparation of root canals with accentuated curvature is challenging. New rotatory systems, such as Reciproc, require a shorter period of time to prepare curved canals, and became a viable alternative for endodontic treatment of teeth with root dilaceration. Thus, this study aimed to report a clinical case of endodontic therapy of root with accentuated dilaceration using Reciproc single-file system. Mandibular right second molar was diagnosed as asymptomatic irreversible pulpitis. Pulp chamber access was performed, and glide path was created with #10 K-file (Dentsply Maillefer) and PathFile #13, #16 and #19 (Dentsply Maillefer) up to the temporary working length. The working length measured corresponded to 20 mm in the mesio-buccal and mesio-lingual canals, and 22 mm in the distal canal. The R25 file (VDW GmbH) was used in all the canals for instrumentation and final preparation, followed by filling with Reciproc gutta-percha cones (VDW GmbH) and AH Plus sealer (Dentsply Maillefer), using thermal compaction technique. The case has been receiving follow-up for 6 mon and no painful symptomatology or periapical lesions have been found. Despite the difficulties, the treatment could be performed in a shorter period of time than the conventional methods.

A study on the acoustic performance of a silencer according to the change of properties of absorbing material (흡음재 물성치 변화에 따른 소음기 음향성능 연구)

  • Lee, Yongbeom;Yang, Haesang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.278-289
    • /
    • 2021
  • In this study, the acoustic performance of a dissipative silencer used in the ship with excellent performance compared to its size was predicted and analyzed using a numerical analysis method to reduce the pipe noise. To this end, the performance of the single expansion chamber-shaped silencer was verified using experimental and numerical analysis methods. The acoustic performance of the silencer was expressed using the Transmission Loss (TL), an indicator of its own performance, and the result was derived using the two-load method, which measured by changing the impedance at the end of the pipe. For the numerical analysis method, a general-purpose finite element analysis program was used, and the Delany-Bazley-Miki model with the flow resistivity of the sound absorbing material as an input parameter was applied. Finally, we compared the experimental and simulated results for each of the acoustic performances of the single expansion type and the dissipative silencer to confirm the consistency of the results, and predicted and analyzed the simulation results for four cases according to the properties of the sound absorbing material.

Evaluation of Single and Stacked MFC Performances under Different Dissolved Oxygen Concentrations in Cathode Chamber (환원전극 DO 농도에 따른 단일 및 직렬연결 미생물연료전지 전기발생량 평가)

  • Yu, Jae-Cheul;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The performance of microbial fuel cell (MFC) can be affected by many factors including the rate of organic matter oxidation, the electron transfer to electrode by electrochemical bacteria, proton diffusion, the concentration of electron acceptor, the rate of electron acceptor reduction and internal resistance. the performance of MFC using oxygen as electron acceptor can be influenced by oxygen concentration as limit factors in cathode compartment. Many studies have been performed to enhance electricity production from MFC. The series or parallel stacked MFC connected several MFC units can use to increase voltages and currents produced from MFCs. In this study, a single MFC (S-MFC) and a stacked MFC (ST-MFC) using acetate as electron donor and oxygen as electron acceptor were used to investigate the influence of dissolved oxygen (DO) concentrations in cathode compartment on MFC performance. The power density (W/$m^3$) of S-MFC was in order DO 5 > 3 > 7 > 9 mg/L, the maximum power density (W/$m^3$) of S-MFC was 42 W/$m^3$ at DO 5 mg/L. The power density (W/$m^3$) of ST-MFC was in order DO 5 > 7 > 9 > 3 mg/L and the maximum power density (W/$m^3$) of STMFC was 20 W/$m^3$ at DO 5 mg/L. These results suggest that the DO concentration of cathode chamber should be considered as important limit factor of MFC operation and design for stacked MFC as well as single MFC. The results of ST-MFC operation showed the voltage decrease of some MFC units by salt formation on the surface of anode, resulting in decrease total voltage of ST-MFC. Therefore, connecting MFC units in parallel might be more appropriate way than series connections to enhance power production of stacked MFC.

Sound Absorption Characteristics of Permeable Membrane (통기성을 갖는 막재료의 흡음특성)

  • Jeong, Jeong-Ho;Kim, Jung-Joong;Kim, Ku-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.270-275
    • /
    • 2009
  • Sound absorption characteristics of membrane system which are used in stadiums and arenas were investigated. Theoretical studies on acoustic properties of single and double leaf permeable membrane conducted. Also, experimental studies on sound absorption characteristics of combined membrane system that is composed of outer and inner membrane material were conducted. In this study, sound absorption characteristics of each membrane were investigated by experiments in reverberation chamber. 4 types of permeable membranes and a non-permeable membrane were used for experiments. Air space behind membrane material and tension on the membrane was varied. Sound absorption performance of permeable membrane materials was confirmed. As increasing air space behind the membrane material, sound absorption coefficient was increased. In a resonance absorption frequency band sound absorption coefficient varied more dramatically. Sound absorption characteristics were flat in mid and high frequency range and sound absorption coefficient was from 0,3 to 0,5. Also sound absorption coefficient was increased by the increment of surface density and air permeability of membrane. However, over the certain value of air permeability, sound absorption coefficient was decreased. These results can be used as design factors and method for the room acoustic design of dome-stadiums and large free-form buildings.

  • PDF

Effect of Body Movement and Position of Antenna on the Capacity of WBAN Channel (인체 움직임과 안테나 위치가 WBAN 채널 용량에 미치는 영향 분석)

  • Ahn, Chun-Soo;Ahn, Byoung-Jik;Kim, Sun-Woo;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.229-234
    • /
    • 2012
  • This paper presents channel measurements for wireless body area network(WBAN) and provides performance evaluation from the measurement. We measured the radio propagation in 2.45 GHz ISM band in an anechoic chamber according to various human movements and the position of transmit antennas. Two transmit antennas are mounted on different positions of human body for the purpose of comparing the diversity gain and correlation between the channels in $2{\times}1$ multiple-input single-output(MISO) systems. The experimental results show that the outage capacity is closely related with the correlation coefficient between channels in transmit diversity system.

An Experimental Study on the Effect of Air Space on the Absorption Property of Composite Absorption System (배후공기층이 복합흡음구조의 흡음특성에 미치는 영향에 관한 실험적 연구)

  • Oh, Yang-Ki
    • KIEAE Journal
    • /
    • v.1 no.2
    • /
    • pp.47-54
    • /
    • 2001
  • Single sound absorbers such as porous materials, panels, and Helmholts resonators have limited performance with some extents of frequency region. For example, porous materials do not attenuate low frequency sounds, while panels do not absorb high frequency sounds. Composite absorption structure with coverings, porous materials, and air gaps are an alternative for wide band sound absorption. Slits, panels, perforated panels are those materials for coverings, glass wool, mineral wool, polyester, and polyurethane are frequently used porous materials. Air gap between the porous material and background surface is one of major factors which governs the absorption characteristics of composite absorption structures, especially in the low frequency area. Calculations and measurements show that the absorption coefficients of composite absorption structure, in mid and low frequency bands, are getting higher with increased air gaps. Perforated panels rather than slits and panels are good coverings with higher number as far as absorption coefficient is concerned. Perforated panels with porous materials and 37 cm of air gaps in background have high absorption coefficients for all frequency bands, above 0.7 to 1.0. All measurements are performed in reverberation chamber, Mokpo National University, according to ISO 354 and ISO 3382.

  • PDF

A Study on Energy Saving of IMV Circuit using Pressure Feedback

  • Park, Hyoung Gyu;Nahian, Syed Abu;Anh, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.31-44
    • /
    • 2016
  • In recent hydraulic actuation systems, conventional hydraulic spool valves with pressure compensators are becoming less popular, after the introduction of the independent metering concept for valves. Within this concept, four valves are needed for actuating a single cylinder. Subsequently, this increases the freedom of controlling both chamber pressures of the cylinder, and it then provides for electronically-controlled pressure compensation facilities. Additionally, this has the potential to save valuable energy. The primary focus of this paper is to develop a new generation of hydraulic circuits using the independent metering valve (IMV). This configuration can function well as a conventional IMV circuit while providing better pressure control. We first describe the working principles of five distinct modes of the proposed IMV system. Then, mathematical models for each working mode are presented. Finally, we present numerical simulations that have been carried out to evaluate the system performance, in comparison with that of the conventional IMV configuration. The simulation results demonstrate that the performance of the new IMV configuration is superior to the conventional IMV system in terms of energy savings.