• Title/Summary/Keyword: Single Chamber

Search Result 457, Processing Time 0.036 seconds

Performance Modeling of Single-Chamber Micro SOFC (단실형 마이크로 고체 산화물 연료전지의 작동특성 전산모사)

  • Cha, Jeong-Hwa;Chung, Chan-Yeup;Chung, Yong-Chae;Kim, Joosun;Lee, Jongho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.854-859
    • /
    • 2005
  • Performance of micro scale intermediate temperature solid oxide fuel cell system has been successfully evaluated by computer simulation based on macro modeling. Two systems were studied in this work. The one is designed that the ceria-based electrolyte placed between composite electrodes and the other is designed that electrodes alternately placed on the electrolyte. The injected gas was composed of hydrogen and air. The polarization curve was obtained through a series of calculations for ohmic loss, activation loss and concentration loss. The calculation of each loss was based on the solving of mathematical model of multi physical-phenomena such as ion conduction, fluid dynamics and diffusion and convection by Finite Element Method (FEM). The performance characteristics of SOFC were quantitatively investigated for various structural parameters such as distance between electrodes and thickness of electrolyte.

Fabrication and Properties of Porous Ni Thin Films

  • Choi, Sun-Hee;Kim, Woo-Sik;Kim, Sung-Moon;Lee, Jong-Ho;Son, Ji-Won;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.265-269
    • /
    • 2006
  • We have deposited NiO films by RF sputtering on $Al_2O_3/SiO_2/Si$ and 100 nm-thick Gd doped $CeO_2$ covered $Al_2O_3/SiO_2/Si$ substrates at various $Ar/O_2$ ratios. The deposited films were reduced to form porous Ni thin fllms in 4% $H_2\;at\;400^{\circ}C$. For the films deposited in pure Ar, the reduction was retarded due to the thickness and the orientation of the NiO films. On the other hand, the films deposited in oxygen mixed ambient were reduced and formed porous Ni films after 20 min of reduction. We also investigated the possibility of using the films for the single chamber operation by studying the electrical property of the films in the fuel/air mixed environment. It is shown that the resistance of the Ni film increases quickly in the mixed gas environment and thus further improvements of Ni-base anodes are required for using them in the single chamber operation.

Performance Improvement of Peristaltic Micropump Using Various Actuating Signal (다양한 동작신호의 사용에 따른 연동형 마이크로 펌프의 성능 향상)

  • Hong, Pyo-Hwan;Jung, Dong-Geon;Pyo, Dae-Seong;Lee, Jong-Hyun;Cho, Chan-Seob;Kim, Bonghwan
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.428-432
    • /
    • 2013
  • This paper described the development of electrostatically driven peristaltic micropump. The proposed micropump consists of a flexible membrane and a single chamber which electrodes are inserted. The single chamber is divided into smaller cells by the electrodes. The fabricated micropump was operated with four electrodes in the membrane and a various phase sequencing actuation. We studied the changes in the flow rate corresponding to the actuating signal applied to the micropump under the zero hydraulic pressure difference between lnlet port and outlet port. The pump was operated from 60 to 130 V. Whereas the maximum flow rate in basic actuating signal is about 83 ${\mu}1/min$ at 15 Hz, the maximum flow rate in optimized actuating signal is about 114 ${\mu}l/min$ at 10 Hz.

Synchronous Control of an Asymmetrical Dual Redundant EHA (비대칭 이중화 EHA의 동기 제어)

  • Lee, Seong Ryeol;Hong, Yeh Sun
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, an elementary force fighting problem was investigated. The problem is encountered when a double-rod type EHA(electro-hydrostatic actuator) is combined with a single-rod type EHA to build a redundant actuator system with synchronized motion. When the rod-side chambers of the two different types of EHAs have the same effective piston areas and are simultaneously pressurized by an external load, the two EHAs behave identically, sharing the external load equally. However, when the piston head-side chamber of the single rod type EHA, having a larger effective area than the rod-side chamber, is pressurized by the external load, an abnormal force fighting between the two EHAs occurs, unless their pump speeds are properly decoupled. In this study, the output drive forces of each EHA were obtained from the cylinder pressure signals and applied to the position control for each EHA to maintain the balance between their pump speeds. Adding minor force difference feedback loops to the position control, the force fighting phenomena could be eliminated and steady state synchronization errors were reduced. The power consumption of the pumps also could be remarkably reduced, avoiding unnecessarily high load pressures to the pumps.

The Overall Performance Improvement of Microbial Fuel Cells Connected in Series with Dairy Wastewater Treatment

  • Choudhury, Payel;Bhunia, Biswanath;Bandyopadhyay, Tarun Kanti;Ray, Rup Narayan
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.101-111
    • /
    • 2021
  • To improve the potential of single chamber microbial fuel cells (SCMFCs) as an applicable technology, the main challenge is a practical application for larger scales bioenergy production from potent exoelectrogenic microorganism with real dairy wastewater. To increase power generation, three individual MFCs were together operated in series best under the fed batch condition for 15 days. The volume of MFC 1 and MFC 2 is "300 mL" and MFC 3 is "500 mL" respectively. The individual MFCs 1, MFC 2 and MFC 3 gives an open circuit voltage of 0.60 V, 0.66 V and 0.55 V and result in total working voltage when connected in series of 1.745V, which lead an LED to glow. The maximum power densities obtained from MFC 1, MFC 2 and MFC 3 are 62 mW/㎡, 50 mW/㎡ and 45 mW/㎡ (normalized to the surface area of the anodic electrode, which was 50 ㎠ for all three MFCs), and corresponding to current densities of 141 mA/㎡, 155 mA/㎡ and 123 mA/㎡, respectively. Therefore this work suggests the cheapest way to connect microbial fuel cells in series to gain power with the lowest operating cost and chemical oxygen demand (COD) removal.

Numerical Analysis for Hydrodynamic Performance of OWC Devices with Multiple Chambers in Waves

  • Kim, Jeong-Seok;Nam, Bo Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.21-31
    • /
    • 2022
  • In recent years, various studies have been conducted on oscillating-water-column-type wave energy converters (OWC-WECs) with multiple chambers with the objective of efficiently utilizing the limited space of offshore/onshore structures. In this study, a numerical investigation based on a numerical wave tank was conducted on single, dual, and triple OWC chambers to examine the hydrodynamic performances and the energy conversion characteristics of the multiple water columns. The boundary value problem with the Laplace equation was solved by using a numerical wave tank based on a finite element method. The validity of the current numerical method was confirmed by comparing it with the measured data in the previous experimental research. We undertook a series of numerical simulations and observed that the water column motion of sloshing mode in a single chamber can be changed into the piston motion of different phases in multiple OWC chambers. Therefore, the piston motion in the multiple chambers can generate considerable airflow at a specific resonant frequency. In addition, the division of the OWC chamber results in a reduction of the time-dependent variability of the final output power from the device. As a result, the application of the multiple chambers leads to an increase of the energy conversion performance as well as a decrease of the variability of the wave energy converter.

Electricity Generations in Submerged-flat and Stand-flat MFC Stacks according to Electrode Connection (침지 및 직립 평판형 MFC 스택에서 전극연결 방식에 따른 전기발생량 비교)

  • Yu, Jaecheul;Park, Younghyun;Lee, Taeho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.589-593
    • /
    • 2016
  • Microbial fuel cell (MFC) can produce electricity from oxidation-reduction of organic and inorganic matters by electrochemically active bacteria as catalyst. Stacked MFCs have been investigated for overcoming low electricity generation of single MFC. In this study, two-typed stacked-MFCs (submerged-flat and stand-falt) were operated according to electrode connection for optimal stacked technology of MFC. In case of submerged-flat MFC with all separator electrode assembly (SEA) sharing anode chamber, MFC with mixed-connection showed more voltage loss than MFC with single-connection method. And MFC stacked in parallel showed better voltage production than MFC stacked in series. In case of stand-flat MFC, voltage loss was bigger when SEAs sharing anodic chamber only were connected in series. Voltage loss was decreased when SEAs parallel connected SEAs sharing anodic chamber were connected in series.

Effect of Number and Condition of Reflection Site on Pulse Wave (반사 지점의 개수와 조건이 맥파에 미치는 영향)

  • Lee, Min-Woo;Jang, Min;Shin, Sang-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.8-13
    • /
    • 2020
  • To develop cardiovascular simulator capable of implementing pulse waves similar to the human body, accurate information about reflection wave is required. However, the conclusion is still not clear and various discussions are underway. In this study, the pulse wave velocity of the tube used in the experiment was first determined by measuring the pressure waves at two points in a single tube system with the experimental device to implement the pulse wave transmission of blood vessels, and the superposition time and characteristics of the reflection wave were confirmed. After that, an air chamber was set at the reflection site, and the effect of the change of air volume on the reflection wave was investigated. Finally, the effect of the number of branches connected to a single tube on the reflection wave was investigated. The superposition time of the reflection wave can be controlled by the air volume of the air chamber, and the magnitude of the reflection wave is influenced by the number of reflection sites that generate the reflection wave. The results of this study may be of practical assistance to simulator researchers who want to implement pulse wave similar to clinical data. It is expected that the more results similar to clinical are provided, the greater the scope of the simulator's contribution to clinical cardiovascular research.

Prediction of the Transmission Loss of Rectangular Lined Plenum Chamber by the Rayleigh-Ritz Method (Rayleigh-Ritz 방법에 의한 흡음재가 부착된 직방형 소음기의 전달 손실 예측)

  • Kim, Hoi-Jeon;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.869-872
    • /
    • 2005
  • The purpose of this study is on the prediction of the acoustic performance of the lined rectangular plenum chamber which can be used in the HVAC systems. The lined plenum chamber is modeled as a piston driven rectangular tube without mean flow and the acoustic pressure in the lined chamber is obtained by superposing the three dimensional pressure due to each of uniformly and harmonically fluctuating pistons. The arbitrary locations of inlet/outlet ports as well as the acoustic higher order modes generated at the area discontinuities of the port chamber interfaces are taken into consideration. The four-pole parameters can be derived by imposing the proper boundary conditions on each inlet and outlet ports. The lining material on the internal wall is assumed to be a bulk-reacting model. A single weak variation statement which satisfies the fluctuating rigid piston condition and the pressure and displacement continuity condition at the interface between the lining material and the airway was developed. The set of cosine functions were used as the admissible function when applying the Rayleigh-Ritz method. Computed results are compared with those predicted by using the locally-reacting lining material and experimental results, respectively. There are a good agreement shown between the results by the Rayleigh-Ritz method and the experiment results. The derived transfer matrices can be easily combined with other four-pole parameters of different types of mufflers for the calculation of the whole system performance.

  • PDF

Development of a new thermal inkjet head with the virtual valve fabricated by MEMS technology (멤스기술을 이용한 가상밸브가 있는 새로운 잉크젯 헤드 개발)

  • Bae, Ki-Deok;Baek, Seog-Soon;Shin, Jong-Woo;Lim, Hyung-Taek;Shin, SuHo;Oh, Yong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1892-1897
    • /
    • 2003
  • A new thermal inkjet printer head on SOI wafer with virtual valve was proposed. It was composed of two rectangular heaters with same size. So we could call it T-jet(Twin jet). T-jet has a lot of merits. It has the advantage of being fabricated with one wafer and is easy to change the size of chamber, nozzle, restrictor and so on. However, above all, It is the best point that T-jet has a virtual valve. And it was manufactured on SOI wafer. The chamber was formed in its upper silicon whose thickness was 40um. The chamber's bottom layer was silicon dioxide of SOI wafer and two heaters were located underneath the chamber's ceiling. And the restirctor was made beside the chamber. Nozzle was molded by process of Ni plating. Ni was 30um thick. Nozzle ejection test was performed by printer head having 56 nozzles in 2 columns with 600NPI(nozzle per inch) and black ink. It measured a drop velocity of 12m/s, a drop volume of 30pl, and a maximum firing frequency of 12KHz for single nozzle ejection. Throwing out the ink drop in whole nozzles at the same time, it was observed that the uniformity of the drop velocity and volume was less than 4%.

  • PDF