• Title/Summary/Keyword: Single Cell

Search Result 3,845, Processing Time 0.04 seconds

A Study on Thermal Cycle Characteristics of Solid Oxide Fuel Cell (고체 산화물 연료전지의 열사이클 따른 성능 열화 특성 연구)

  • Kim, Eung-Yong;Song, Rak-Hyun;Jeon, Kwang-Sun;Shin, Dong-Ryul;Kang, Thae-Khapp
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1312-1314
    • /
    • 1998
  • SOFC system is often subject to thermal cycle condition during normal start/stop, shutdown, and emergence state. Under the thermal cycle condition of heating and cooling, the SOFC components expand or shrink, which produces thermal stress and thermal shock. The SOFC performance is degraded by the thermal factors. To protect SOFC system from the thermal degradation, the optimum thermal condition must be clarified. In this study, to examine the thermal cycle characteristics, we fabricated single cells of planar SOFC with an area of $5{\times}5cm$. The electrolyte and PEN were tested under thermal cycle conditions in the range of$ 2-8^{\circ}C/min$. After thermal cycle test. crack creation of the components were examined using ultraviolet apparatus. No crack in the electrolyte and PEN were observed. The single cell system with alumina frame were also tested under thermal cycle conditions of 2, 3, $4^{\circ}C/min$. The single cell was fractured at the thermal cycle of 3 and $4^{\circ}C/min$ and the optimum condition of the thermal cycle to be found below $2^{\circ}C/min$.

  • PDF

Effects of Dietary Levels of Single Cell Protein(SCP) on the Productivity of Broiler Chicks (균체 단백질의 첨가가 육계 생산성에 미치는 영향)

  • 장윤호;김정우;김인호;김춘수
    • Korean Journal of Poultry Science
    • /
    • v.25 no.2
    • /
    • pp.79-89
    • /
    • 1998
  • Dietary levels of single cell protein(SCP) 0 %, 5 %, 10 % and 15 % were included in experimental diets. The purpose of this experiment is to examine the effects of diets containing different levels of SCP on the performance of broiler chicks, including the nutrient availabilities, compared to that of the commercial diet. In order to evaluate the nutritive value of SCP, feeding and metabolism trial were conducted with a total of 160 broiler chicks for a period of 4 weeks. Contents of CP and pure protein in the composition of SCP were 67 % and 32. 05 %, respectively. In general, diets with over 10 % SCP substitution had significantly decreased body weight gain compared to the control diet. Feed intake of chicks fed SCP supplemental groups was significantly decreased compared to that of control, especially observed the significant difference in proportion to increas mg the levels of SCP. The feed efficiency was decreased by the addiition of SCP, but was not significantly different between control and SCP supplemental groups. The digestibilities of DM, CP and NFE tended to be similar among treatments, whereas crude fiber treated with SCP tended to be lower digestibility than control. In conclusion, the optimum dietary supplemental SCP would be less 5 % for broiler growth in this experiment.

  • PDF

Effects of Single Cell Products of Apple on Stimulating Various Functions of Murine Peritoneal Macrophages

  • Choi, In-Wook;Cho, Ga-Young;Kim, Seung-Hyun;Park, Yong-Gon
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.347-350
    • /
    • 2006
  • The objective of this study was to investigate the possible effects of oral administration of single cell products (SCP) of apple on activating peritoneal macrophages. Apples were processed either for cold-pressed juice or SCP, which were produced by incubating sliced apples with a protopectinase, Sumyzyme MC. Both cold-pressed juice and SCP of apple were administered to C57BL/6 mice for 10 days to compare their efficacy, along with the control group, in stimulating peritoneal macrophages. The viability of macrophages was significantly increased by up to 161% of that of the control following the administration of apple SCP, whereas the viability of macrophages was increased to a lesser extent of up to 143% in the apple juice (AJ) administered group. Administration of apple SCP also induced a significantly higher production of $H_2O_2$ from macrophages (317% of the control) than that of cold-pressed AJ (210%). Although nitric oxide (NO) production was not increased by the administration of either AJ or SCP, the latter slightly but significantly increased tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$) production from macrophages from 560.4 to 579.8 pg/mL. The results of this study suggest that administering SCP is more efficient than administering AJ to stimulate functions of peritoneal macrophages.

Dynamic Characteristics of Composite Thin-Walled Beams with a Chord wise Asymmetric Cross-Section: I. Single-Cell (시위 방향 비대칭 단면의 복합재료 박벽보의 동특성 연구: I. 단일-셀)

  • Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.41-49
    • /
    • 2018
  • In this study, the theoretical dynamic characteristics of a thin-walled composite beam with a single-cell of chordwise asymmetric cross-section was studied. Mathematical modeling was done by considering the transverse shear effects, the warping restraint effects, the constant taper ratio in the longitudinal direction of the beam, and the geometrical cross-section ratio. The mass coefficients, stiffness coefficients, and Eigen frequencies of the selected section were investigated. In particular, the effects of the taper ratio and cross-section ratio of the model on the Eigen frequencies were analyzed and compared when the asymmetry of the section was considered and the warping function was not corrected.

Unit Cell FEM Analysis Using I-Fiber Single Stitch with Different Thickness

  • Tapullima, Jonathan;Park, Gyu Yeong;Yoon, Dong Hwan;Choi, Jin Ho
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.30-34
    • /
    • 2021
  • This paper present a three-dimensional unit cell finite element analysis to predict the pull-out behavior of a single stitch in a composite laminate. The stitching process used for this study correspond to the I-fiber stitching method that has been studied by the Composite Structures Lab (CSL) as a new through-thickness reinforced method. A total of six cases were analyzed, which were divided in two groups by the stitching yarn used, 6k and 12k. Each group of cases have three different thickness according to the amount of plies; 16 plies, 32 plies and 64 plies. The finite element analysis used the cohesive zone method to characterize the single stitch reinforcement in the interface. Due to the complexity of the load vs displacement curves taken from the experimental results, a bilinear and trilinear bridging laws were implemented in the models. The cohesive parameters used for each case showed a good agreement with the experimental data and can be used for future studies.

Performance evaluation by flow channel effect for a passive air-breathing Direct Methanol Fuel Cell (수동급기 직접 메탄올 연료전지의 유로에 따른 성능 평가)

  • Chang, Ikw-Hang;Ha, Seung-Bum;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.45-48
    • /
    • 2008
  • This paper presents a passive air-breathing direct methanol fuel cell (DMFC) which has been designed and tested. The single cell is fuelled by methanol vapor that is supplied through flow channel from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The methods for supplying the methanol vapor to the single cell were parallel channel and chamber. This research investigates various methods to identify the effects of using flow channels for providing the methanol vapor at the anode, and the opening ratio between the inlet and outlet ports for the methanol flow at the anode. The best flow channel condition for passive DMFC was a chamber, and the opening ratio was 0.8. Under these conditions, the peak power was 10.2mW/$cm^2$ at room temperature and ambient pressure. The key issues for the Passive DMFCs for using methanol vapor are that sufficient methanol needs to be supplied using a large as possible opening ratio. However, it is shown that the performance of the passive DMFC, which has a channel at the anode,is low due to the low differential pressure and insufficient methanol supply rate.

  • PDF

Single Cell Performance Recovery of $SO_2$ Poisioned PEMFC using Cyclic Voltametry (순환전류 전압법을 이용한 이산화황 피독 PEMFC 단위전지의 성능 회복)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.497-501
    • /
    • 2011
  • Polymer electrolyte membrane fuel cell (PEMFC) performance degrade when sulfur dioxide is present in the fuel hydrogen gas, this is referred as $SO_2$ poisoning. This paper reveals $SO_2$ poisoning on PEMFC cathode part by measuring electrical performance of single cell under 1 ppm and 5 ppm on $SO_2$ gas operating. The security of $SO_2$ poisoning depended on $SO_2$ concentration under the best operating conditions($65^{\circ}C$ of cell temperature and 100% of relative humidity between anode and cathode). $SO_2$ adsorption occured on the surface of catalyst layer on membrane electrode assembly (MEA), In addition, MEA poisoning by $SO_2$ was cumulative but reversible. After poisoning within 5 ppm $SO_2$ for 1hr, the electrical performance of PEMFC was found to recover up to about 93% by cyclic voltametry scan.

Experimental Investigation on High Efficient Electrolytes of Electrochemical Photovoltaic Cells (전기화학형 광전변환 셀의 고효율 전해질 제작에 관한 실험적 고찰)

  • Kim, Doo-Hwan;Han, Chi-Hwan;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.100-104
    • /
    • 2011
  • In this work, an optimum condition of electrolytes preparation for photovoltaic cells application was investigated experimentally in terms of impedance and conversion efficiency of the cells. 3-methoxyppropionitrie and redox pairs with LiI and $I_2$ were used as stable solvents for fabrication of electrolyte. Efficiency comparison of the prepared cells carried out for various additives and ionic liquids. From the results, there was an optimum concentration (about 0.3 M) of ionic liquids for efficient cell fabrication. For case of electrolyte using single DMAp additive, the maximum conversion efficiency of the cell was 6.4%($V_{oc}$: 0.78V, $J_{sc}$: 14.4 mA/$cm^2$, ff: 0.57). For case of electrolyte using both DMAp and CEMim additives, the maximum conversion efficiency of the cell was 7.2%($V_{oc}$: 0.79V, $J_{sc}$: 16 mA/$cm^2$, ff: 0.57). From the result of electrochemical impedance measurement, both Z1 and Z3 values of binary additives-based cell decreased compared to those of single additive-based. This is due to the decreased in internal and charge transfer resistivities of the cells.

The effects of the surrounding viscoelastic media on the buckling behavior of single microfilament within the cell: A mechanical model

  • Khadimallah, Mohamed A.;Safeer, Muhammad;Taj, Muhammad;Ayed, Hamdi;Hussain, Muzamal;Bouzgarrou, Souhail Mohamed;Mahmoud, S.R.;Ahmad, Manzoor;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 2020
  • In the present study, a mechanical model is applied to account the effects of the surrounding viscoelastic media on the buckling behavior of single microfilament within the cell. The model immeasurably associates filament's bending rigidity, neighboring system elasticity, and cytosol viscosity with buckling wavelengths, buckling growth rates and buckling amplitudes of the filament. Cytoskeleton components in living cell bear large compressive force and are responsible in maintaining the cell shape. Actually these filaments are surrounded by viscoelastic media consisting of other filaments network and viscous cytosole within the cell. This surrounding, viscoelastic media affects the buckling behavior of these filaments when external force is applied on these filaments. The obtained results, indicate that the coupling of viscoelastic media with the viscous cytosol greatly affect the buckling behavior of microfilament. The buckling forces increased with the increase in the intensity of surrounding viscoelastic media.

Identification of Loliolide with Anti-Aging Properties from Scenedesmus deserticola JD052

  • Dae-Hyun Cho;Jin-Ho Yun;Jina Heo;In-Kyoung Lee;Yong-Jae Lee;Seunghee Bae;Bong-Sik Yun;Hee-Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1250-1256
    • /
    • 2023
  • Herein, different extracts of Scenedesmus deserticola JD052, a green microalga, were evaluated in vitro as a potential anti-aging bioagent. Although post-treatment of microalgal culture with either UV irradiation or high light illumination did not lead to a substantial difference in the effectiveness of microalgal extracts as a potential anti-UV agent, the results indicated the presence of a highly potent compound in ethyl acetate extract with more than 20% increase in the cellular viability of normal human dermal fibroblasts (nHDFs) compared with the negative control amended with DMSO. The subsequent fractionation of the ethyl acetate extract led to two bioactive fractions with high anti-UV property; one of the fractions was further separated down to a single compound. While electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy analysis identified this single compound as loliolide, its identification has been rarely reported in microalgae previously, prompting thorough systematic investigations into this novel compound for the nascent microalgal industry.