• 제목/요약/키워드: Simultaneous localization and mapping algorithm

검색결과 52건 처리시간 0.024초

무인 구조물 검사를 위한 자율 비행 시스템 (Autonomous Navigation System of an Unmanned Aerial Vehicle for Structural Inspection)

  • 정성욱;최덕규;송승원;명현
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.216-222
    • /
    • 2021
  • Recently, various robots are being used for the purpose of structural inspection or safety diagnosis, and their needs are also rising rapidly. Among the structural inspection using robots, a lot of researches has recently been conducted on inspection of various facilities and structures using an unmanned aerial vehicle (UAV). However, since GNSS (Global Navigation Satellite System) signals cannot be received in an environment near or below structures, the operation of UAVs has been done manually. For a stable autonomous flight without GNSS signals, additional technologies are required. This paper proposes the autonomous flight system for structural inspection consisting of simultaneous localization and mapping (SLAM), path planning, and controls. The experiments were conducted on an actual large bridge to verify the feasibility of the system, and especially the performance of the proposed SLAM algorithm was compared through comparative analysis with the state-of-the-art algorithms.

로봇운영체제 기반의 가상 라이다 드라이버 구현 및 평가 (Implementation and Evaluation of a Robot Operating System-based Virtual Lidar Driver)

  • 황인호;김강희
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권10호
    • /
    • pp.588-593
    • /
    • 2017
  • 본 논문에서는 자율주행차량에서 사용되는 고가의 다채널 라이다(LiDAR) 센서를 다수의 저가 소채널 라이다들로 대체하여 사용하는 경우에 다수의 라이다들을 하나의 라이다로 가상화하는 드라이버를 제안한다. 이를 통해 로봇 분야에서 하나의 물리 라이다를 가정하여 개발된 SLAM(Simultaneous Localization And Mapping) 알고리즘들은 수정 없이 사용될 수 있다. 본 논문은 제안하는 드라이버를 로봇운영체제 ROS(Robot Operating System) 상에서 구현하고 SLAM 알고리즘과 함께 평가하였다. 평가 결과, 제안한 드라이버는 3차원 점지도의 점밀도를 제어하는 필터와 함께 기존 알고리즘의 수정 없이 사용될 수 있음을 확인하였다.

자율주행 장치를 위한 수정된 유전자 알고리즘을 이용한 경로계획과 특징 맵 기반 SLAM (Path-planning using Modified Genetic Algorithm and SLAM based on Feature Map for Autonomous Vehicle)

  • 김정민;허정민;정승영;김성신
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.381-387
    • /
    • 2009
  • 본 논문에서는 자율주행 장치의 효율적인 자율주행을 위한 특징 맵 기반 SLAM(simultaneous localization and mapping)과 수정된 유전자 알고리즘을 이용한 경로계획을 제안하였다. 현재 연구되고 있는 자율주행 장치들에 있어서 가장 큰 문제점 중 하나는 환경 적응성이다. 이는 새로운 환경에서 자신의 위치를 인식해야 하는 경우와 "kid napping" 문제와 연계되어 자율주행 장치가 새로운 위치 혹은 알려지지 않은 위치에서 자신의 위치를 인식해야하는 경우로 구분된다. 본 논문에서는 이러한 환경 적응성 문제를 해결하기 위해 초음파 센서를 이용한 특징맵 기반 SLAM을 적용하였으며, 지능형 자율주행 장치의 효율적인 주행을 위해 수정된 유전자 알고리즘(genetic algorithm: GA)을 적용한다. 본 논문에서는 성능을 분석하기 위해 직접 설계 제작한 자율주행 장치를 대상으로 임의의 위치에서 자율주행 장치 스스로 자신의 위치를 인식한 후, 주어진 작업을 수행하기 위해 유전자 알고리즘을 통하여 최적화 된 경로를 따라 주행하는 가를 실험하였다. 실험 결과, 빠르고 최적화된 경로계획과 효율적인 SLAM이 가능함을 확인 할 수 있었다.

Multi-robot Mapping Using Omnidirectional-Vision SLAM Based on Fisheye Images

  • Choi, Yun-Won;Kwon, Kee-Koo;Lee, Soo-In;Choi, Jeong-Won;Lee, Suk-Gyu
    • ETRI Journal
    • /
    • 제36권6호
    • /
    • pp.913-923
    • /
    • 2014
  • This paper proposes a global mapping algorithm for multiple robots from an omnidirectional-vision simultaneous localization and mapping (SLAM) approach based on an object extraction method using Lucas-Kanade optical flow motion detection and images obtained through fisheye lenses mounted on robots. The multi-robot mapping algorithm draws a global map by using map data obtained from all of the individual robots. Global mapping takes a long time to process because it exchanges map data from individual robots while searching all areas. An omnidirectional image sensor has many advantages for object detection and mapping because it can measure all information around a robot simultaneously. The process calculations of the correction algorithm are improved over existing methods by correcting only the object's feature points. The proposed algorithm has two steps: first, a local map is created based on an omnidirectional-vision SLAM approach for individual robots. Second, a global map is generated by merging individual maps from multiple robots. The reliability of the proposed mapping algorithm is verified through a comparison of maps based on the proposed algorithm and real maps.

Depth-hybrid speeded-up robust features (DH-SURF) for real-time RGB-D SLAM

  • Lee, Donghwa;Kim, Hyungjin;Jung, Sungwook;Myung, Hyun
    • Advances in robotics research
    • /
    • 제2권1호
    • /
    • pp.33-44
    • /
    • 2018
  • This paper presents a novel feature detection algorithm called depth-hybrid speeded-up robust features (DH-SURF) augmented by depth information in the speeded-up robust features (SURF) algorithm. In the keypoint detection part of classical SURF, the standard deviation of the Gaussian kernel is varied for its scale-invariance property, resulting in increased computational complexity. We propose a keypoint detection method with less variation of the standard deviation by using depth data from a red-green-blue depth (RGB-D) sensor. Our approach maintains a scale-invariance property while reducing computation time. An RGB-D simultaneous localization and mapping (SLAM) system uses a feature extraction method and depth data concurrently; thus, the system is well-suited for showing the performance of the DH-SURF method. DH-SURF was implemented on a central processing unit (CPU) and a graphics processing unit (GPU), respectively, and was validated through the real-time RGB-D SLAM.

Automatic wall slant angle map generation using 3D point clouds

  • Kim, Jeongyun;Yun, Seungsang;Jung, Minwoo;Kim, Ayoung;Cho, Younggun
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.594-602
    • /
    • 2021
  • Recently, quantitative and repetitive inspections of the old urban area were conducted because many structures exceed their designed lifetime. The health of a building can be validated from the condition of the outer wall, while the slant angle of the wall widely serves as an indicator of urban regeneration projects. Mostly, the inspector directly measures the inclination of the wall or partially uses 3D point measurements using a static light detection and ranging (LiDAR). These approaches are costly, time-consuming, and only limited space can be measured. Therefore, we propose a mobile mapping system and automatic slant map generation algorithm, configured to capture urban environments online. Additionally, we use the LiDAR-inertial mapping algorithm to construct raw point clouds with gravity information. The proposed method extracts walls from raw point clouds and measures the slant angle of walls accurately. The generated slant angle map is evaluated in indoor and outdoor environments, and the accuracy is compared with real tiltmeter measurements.

모바일 로봇에서 RFID를 이용한 지도작성 알고리즘 개발 (Development of Map Building Algorithm for Mobile Robot by Using RFID)

  • 김시습;선정안;기창두
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.133-138
    • /
    • 2011
  • RFID system can be used to improve object recognition, map building and localization for robot area. A novel method of indoor navigation system for a mobile robot is proposed using RFID technology. The mobile robot With a RFID reader and antenna is able to find what obstacles are located where in circumstance and can build the map similar to indoor circumstance by combining RFID information and distance data obtained from sensors. Using the map obtained, the mobile robot can avoid obstacles and finally reach the desired goal by $A^*$ algorithm. 3D map which has the advantage of robot navigation and manipulation is able to be built using z dimension of products. The proposed robot navigation system is proved to apply for SLAM and path planning in unknown circumstance through numerous experiments.

SLAM 기반 GPS/INS/영상센서를 결합한 헬리콥터 항법시스템의 구성 (SLAM Aided GPS/INS/Vision Navigation System for Helicopter)

  • 김재형;유준;곽휘권
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.745-751
    • /
    • 2008
  • This paper presents a framework for GPS/INS/Vision based navigation system of helicopters. GPS/INS coupled algorithm has weak points such as GPS blockage and jamming, while the helicopter is a speedy and high dynamical vehicle amenable to lose the GPS signal. In case of the vision sensor, it is not affected by signal jamming and also navigation error is not accumulated. So, we have implemented an GPS/INS/Vision aided navigation system providing the robust localization suitable for helicopters operating in various environments. The core algorithm is the vision based simultaneous localization and mapping (SLAM) technique. For the verification of the SLAM algorithm, we performed flight tests. From the tests, we confirm the developed system is robust enough under the GPS blockage. The system design, software algorithm, and flight test results are described.

자율주행 장치를 위한 특징 맵 기반 SLAM (SLAM based on feature map for Autonomous vehicle)

  • 김정민;정승영;전태룡;김성신
    • 한국정보통신학회논문지
    • /
    • 제13권7호
    • /
    • pp.1437-1443
    • /
    • 2009
  • 본 논문에서는 초음파와 전자나침반, 엔코더, 자이로센서를 복합적으로 구성하여 로봇의 SLAM 방법을 제시하였다. 일반적으로 전자 나침반과 엔코더, 자이로를 이용한 로봇의 위치측정은 작업공간에서의 상대위치만을 알 수 있다. 실제 로봇이 작업공간에서 작업을 하기 위해서는 로봇의 절대위치 정보를 알아야만 하며, 이는 SLAM으로 얻을 수 있다. 본 논문에서는SLAM 구현을 위하여 로봇의 작업공간을 초음파 센서를 이용하여 구조적 맵 생성 기법을 통해 맵을 생성한 후, 이를 특정 맵으로 변환하였다. 생성된 특정 맵과 맵 매핑을 활용하여 맵 상의 절대위치를 구한다. 실험은 직접 설계 및 제작한 로봇을 이용하였고, 실험 방법은 초기 좌표를 모르는 로봇을 임의의 장소에 위치 시키고 제안한 SLAM 알고리즘을 이용하여 로봇의 전역 좌표를 찾도록 하였다. 실험 결과, 제안한 SLAM 알고리즘을 이용하여 맵 상의 절대위치를 모두 찾음을 확인하였다.

무인 잠수정 3자유도 운동 실험에 대한 무향 칼만 필터 기반 SLAM기법 적용 (Experiments of Unmanned Underwater Vehicle's 3 Degrees of Freedom Motion Applied the SLAM based on the Unscented Kalman Filter)

  • 황아롬;성우제;전봉환;이판묵
    • 한국해양공학회지
    • /
    • 제23권2호
    • /
    • pp.58-68
    • /
    • 2009
  • The increased use of unmanned underwater vehicles (UUV) has led to the development of alternative navigational methods that do not employ acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small UUV. A SLAM scheme is an alternative navigation method for measuring the environment through which the vehicle is passing and providing the relative position of the UUV. A technique for a SLAM algorithm that uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the UUV and surrounding objects. In order to work efficiently, the nearest neighbor standard filter is introduced as the data association algorithm in the SLAM for associating the stored targets returned by the sonar at each time step. The proposed SLAM algorithm was tested by experiments under various three degrees of freedom motion conditions. The results of these experiments showed that the proposed SLAM algorithm was capable of estimating the position of the UUV and the surrounding objects and demonstrated that the algorithm will perform well in various environments.