• Title/Summary/Keyword: Simultaneous Model

Search Result 851, Processing Time 0.026 seconds

Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method (THINC법을 이용한 비혼합 혼상류의 경계면 추적)

  • Lee, Kwang-Ho;Kim, Kyu-Han;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.277-286
    • /
    • 2012
  • In the numerical simulation of wave fields using a multi-phase flow model that considers simultaneous flows of materials with different states such as gas, liquid and solid, there is need of an accurate representation of the interface separating the fluids. We adopted an algebraic interface capturing method called tangent of hyperbola for interface-capturing(THINC) method for the capture of the free-surface in computations of multi-phase flow simulations instead of geometrical-type methods such a volume of fluid(VOF) method. The THINC method uses a hyperbolic tangent functions to represent the surface, and compute the numerical flux for the fluid fraction functions. One of the remarkable advantages of THINC method is its easy applicability to incorporate various numerical codes based on Navier-Stokes solver because it does not require the extra geometric reconstruction needed in most of VOF-type methods. Several tests were carried out in order to investigate the advection of interfaces and to verify the applicability of the THINC method to wave fields based on the one-field model for immiscible two-phase flows (TWOPM). The numerical results revealed that the THINC method is able to track the interface between air and water separating the fluids although its algorithm is fairly simple.

The Development of Robot and Augmented Reality Based Contents and Instructional Model Supporting Childrens' Dramatic Play (로봇과 증강현실 기반의 유아 극놀이 콘텐츠 및 교수.학습 모형 개발)

  • Jo, Miheon;Han, Jeonghye;Hyun, Eunja
    • Journal of The Korean Association of Information Education
    • /
    • v.17 no.4
    • /
    • pp.421-432
    • /
    • 2013
  • The purpose of this study is to develop contents and an instructional model that support children's dramatic play by integrating the robot and augmented reality technology. In order to support the dramatic play, the robot shows various facial expressions and actions, serves as a narrator and a sound manager, supports the simultaneous interaction by using the camera and recognizing the markers and children's motions, records children's activities as a photo and a video that can be used for further activities. The robot also uses a projector to allow children to directly interact with the video object. On the other hand, augmented reality offers a variety of character changes and props, and allows various effects of background and foreground. Also it allows natural interaction between the contents and children through the real-type interface, and provides the opportunities for the interaction between actors and audiences. Along with these, augmented reality provides an experience-based learning environment that induces a sensory immersion by allowing children to manipulate or choose the learning situation and experience the results. In addition, the instructional model supporting dramatic play consists of 4 stages(i.e., teachers' preparation, introducing and understanding a story, action plan and play, evaluation and wrapping up). At each stage, detailed activities to decide or proceed are suggested.

A Comparative Study on Economic Impacts of a China-Korea FTA and a Japan-Korea FTA using a Dynamic CGE Model (동태CGE모형을 이용한 한·일FTA와 한·중FTA의 경제적 효과 비교분석)

  • Ko, Jong-Hwan
    • International Area Studies Review
    • /
    • v.14 no.3
    • /
    • pp.423-453
    • /
    • 2010
  • This study aims at quantifying potential economic effects on the Korean economy of a China-Korea FTA and a Japan-Korea FTA using a dynamic computable general equilibrium (CGE) model. Most of the previous studies on them used static CGE models. Key findings of this study are that a China-Korea FTA would lead to a higher increase in Korea's exports and economic growth than a Japan-Korea FTA and that both a China-Korea FTA and a Japan-Korea FTA would cause additional trade deficits to Korea, which would be minuscule compared to Korea' economic trade volume. Since potential economic impacts on Korea's industry output and exports by sector of a China-Korea FTA and a Japan-Korea FTA are forecast to be complementary, i.e., major sectors which would run trade deficits from a Japan-Korea FTA would run trade surpluses from a China-Korea FTA, a simultaneous pursuit of both a China-Korea FTA and a Japan-Korea FTA would be more desirable and beneficial to Korea. This study shows that a dynamic CGE model which can take explicit account of international capital mobility and ownership is required for more precise estimation of effects of the FTAs.

Development of the Competency Model of Specialized Vocational High School Teachers as Admission Officers (특성화고 미래인재전형 담당교사들의 역량모델 연구)

  • Doo, Min Young;Woo, BeoDle;Shin, Chang Ho
    • Journal of vocational education research
    • /
    • v.37 no.3
    • /
    • pp.47-63
    • /
    • 2018
  • The purpose of this study is to develop the competency model of specialized vocational school teachers as admission officers. Whereas professional admission officers deal with a variety of admission activities in universities, teachers are responsible for admission duties in specialized high schools in Korea. Therefore, it is necessary to identify the core competencies required for teachers responsible for admission duties in specialized high school settings. In order to develop a competency model, factor analysis was completed for the survey results of 191 teachers who teach in specialized vocational high schools in Seoul, Korea. For evaluating validity of the competency model, the responses from those who had high experiences in admission duties and the average teachers were compared. As a result, this study identified a total of 14 competencies in three competency areas. The competencies required for specialized high school teachers include responsibilities for admission officers, ethics for evaluators, communication skills, teamwork, understandings of admissions process for specialized vocational high school, developing evaluation criteria, generating interview questions, increasing interrater reliability, interview skills, simultaneous evaluation of interviewees, quantification of evaluation results, synthesis of evaluation results, and decision making skills.

A Study on the Industrial Competitiveness Analysis of Domestic Autonomous Operation Technology Industry Based on the Porter's Diamond Model (국내 자율운항기술 분야의 산업경쟁력 분석 연구 - 포터(Porter)의 다이아몬드 모델을 기반으로)

  • PARK, Hye-Ri;PARK, Han-Seon
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.203-208
    • /
    • 2022
  • Recently, various digital technology issues such as e-Navigation, Maritime Autonomous Surface Ship (MASS) and Smart ships have constantly emerged in the maritime industry, based on the fourth industrial revolution. The International Maritime Organization is gradually tightening regulations for marine safety and marine environmental protection, and these strengthened regulations are leading to new maritime industries. Thus, the purpose of this study was to design a suitable model to analyze the industrial competitiveness of domestic autonomous operation technology industry, based on the Porter's diamond model. Based on a total of five evaluation factors and 13 detailed factors, the industrial competitiveness of the domestic autonomous operation technology industry was evaluated qualitatively and quantitatively. This industry, which is in the early stage of industrial development, was evaluated as 16.9 points relative to indexing industrial competitiveness. Currently, it is characterized by the simultaneous development of related regulations and core technologies, from the establishment of the scope of the industry. The industrial competitiveness evaluation considering these industrial characteristics is expected to serve as the basis for strategic support and new industrial policy, and impact a wide range of related industries such as shipping, logistics, ports, and shipbuilding and equipment industries.

Simultaneous Estimation of State of Charge and Capacity using Extended Kalman Filter in Battery Systems (확장칼만필터를 활용한 배터리 시스템에서의 State of Charge와 용량 동시 추정)

  • Mun, Yejin;Kim, Namhoon;Ryu, Jihoon;Lee, Kyungmin;Lee, Jonghyeok;Cho, Wonhee;Kim, Yeonsoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.363-370
    • /
    • 2022
  • In this paper, an estimation algorithm for state of charge (SOC) was applied using an equivalent circuit model (ECM) and an Extended Kalman Filter (EKF) to improve the estimation accuracy of the battery system states. In particular, an observer was designed to estimate SOC along with the aged capacity. In the case of the fresh battery, when SOC was estimated by Kalman Filter (KF), the mean absolute percentage error (MAPE) was 0.27% which was smaller than MAPE of 1.43% when the SOC was calculated by the model without the observer. In the driving mode of the vehicle, the general KF or EKF algorithm cannot be used to estimate both SOC and capacity. Considering that the battery aging does not occur in a short period of time, a strategy of periodically estimating the battery capacity during charging was proposed. In the charging mode, since the current is fixed at some intervals, a strategy for estimating the capacity along with the SOC in this situation was suggested. When the current was fixed, MAPE of SOC estimation was 0.54%, and the MAPE of capacity estimation was 2.24%. Since the current is fixed when charging, it is feasible to estimate the battery capacity and SOC simultaneously using the general EKF. This method can be used to periodically perform battery capacity correction when charging the battery. When driving, the SOC can be estimated using EKF with the corrected capacity.

Load Distribution Ratios of Indeterminate Strut-Tie Models for Simply Supported RC Deep Beams - (I) Proposal of Load Distribution Ratios (단순지지 RC 깊은 보 부정정 스트럿-타이 모델의 하중분배율- (I) 하중분배율의 제안)

  • Kim, Byung Hun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.259-267
    • /
    • 2008
  • The ultimate strengths of reinforced concrete deep beams are governed by the capacity of the shear resistance mechanism composed of concrete and shear reinforcing bars, and the structural behaviors of the beams are mainly controlled by the mechanical relationships according to the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behaviors is presented for the design of simply supported reinforced concrete deep beams. In addition, a load distribution ratio, defined as a magnitude of load transferred by a vertical truss mechanism, is proposed to help structural designers perform the design of simply supported reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of a load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the prime design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete influencing the ultimate strength and behavior are reflected upon based on various and numerous numerical analysis results. In the companion paper, the validity of presented model and load distribution ratio was examined by employing them to the evaluation of the ultimate strengths of various simply supported reinforced concrete deep beams tested to failure.

A Study on the Development of an Integrated Implementation Model for Digital Transformation and ESG Management (디지털 트랜스포메이션과 ESG 경영의 통합 추진을 위한 모델 개발에 관한 연구 )

  • Kim, Seung-wook
    • Journal of Venture Innovation
    • /
    • v.7 no.3
    • /
    • pp.85-100
    • /
    • 2024
  • ESG management refers to corporate management that takes into account environmental, social, and governance factors, while digital transformation goes beyond the mere automation or digitization of existing tasks to drive an innovative change in the essence of work and the way value is created. Therefore, digital transformation can help companies achieve ESG goals and implement sustainable business practices, establishing a complementary relationship between digital transformation and ESG management for corporate sustainability and growth. This relationship maximizes the synergy of integrating digital transformation with ESG management, enabling companies to utilize resources efficiently and prevent redundant investments, ultimately enhancing sustainable management performance. In this study, we propose the simultaneous promotion of business process reengineering (BPR), in which both digital transformation and ESG management are integrated. This is because the collection, analysis, and decision-making processes related to various data for promoting ESG management must be organically integrated with digital transformation technologies. Therefore, we analyzed each ESG management objective presented in the K-ESG guidelines and identified the corresponding digital transformation technologies through expert interviews and a review of prior research. The K-ESG guidelines serve as a useful ESG diagnostic system that enables companies to identify improvement tasks and manage performance based on goals through self-assessment of ESG levels. By developing a model based on the K-ESG guidelines for the integrated promotion of digital transformation and ESG management, companies can simultaneously improve ESG performance and drive digital innovation, reducing redundant investments and trial-and-error while utilizing diverse resources efficiently. This study provides practical and academic implications by developing a concrete and actionable new research model for researchers and businesses.

Testing for Measurement Invariance of Fashion Brand Equity (패션브랜드 자산 측정모델의 등치테스트에 관한 연구)

  • Kim Haejung;Lim Sook Ja;Crutsinger Christy;Knight Dee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.12 s.138
    • /
    • pp.1583-1595
    • /
    • 2004
  • Simon and Sullivan(l993) estimated that clothing and textile related brand equity had the highest magnitude comparing any other industry category. It reflects that fashion brands reinforce the symbolic, social values and emotional characteristics being different from generic brands. Recently, Kim and Lim(2002) developed a fashion brand equity scale to measure a brand's psychometric properties. However, they suggested that additional psychometric tests were needed to compare the relative magnitude of each brand's equity. The purpose of this study was to recognize the psychometric constructs of fashion brand equity and validate Kim and Lim's fashion brand equity scale using the measurement invariance test of cross-group comparison. First, we identified the constructs of fashion brand equity using confirmatory factor analysis through structural equation modeling. Second, we compared the relative magnitude of two brands' equity using the measurement invariance test of multi-group simultaneous factor analysis. Data were collected at six major universities in Seoul, Korea. There were 696 usable surveys for data analysis. The results showed that fashion brand equity was comprised of 16 items representing six dimensions: customer-brand resonance, customer feeling, customer judgment, brand imagery, brand performance and brand awareness. Also, we could support the measurement invariance of two brands' equities by configural and metric invariance tests. There were significant differences in five constructs' mean values. The greatest difference was in customer feeling; the smallest, in customer judgment.

Analysis of volatile compounds and metals in essential oil and solvent extracts of Amomi Fructus (사인으로부터 추출한 정유와 용매 추출물의 휘발성 물질 및 금속성분 분석)

  • Lee, Sam-Keun;Eum, Chul Hun;Son, Chang-Gue
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.436-445
    • /
    • 2015
  • Amomi Fructus with anti-oxidative activity was chosen and essential oil was obtained by SDE (simultaneous distillation extraction), and 39 constituents were determined by GC-MS (gas chromatography-mass spectrometry). Major components were camphor, borneol acetate, borneol, D-limonene and camphene. Three solvent extracts such as hexanes, diethyl ether and methylene chloride from Amomi Fructus were obtained. These were analyzed by GC-MS and 4 more constituents were identified in addition to 39 components discovered in essential oil. Five major components such as camphor, borneol acetate, borneol, D-limonene and camphene were also detected, however the relative peak percents of those components were different from those of constituents in essential oil. To estimate the kind and the amount of materials evaporated at certain temperature and conditions from essential oil and solvent extracts, dynamic headspace apparatus was used and materials evaporated and trapped at certain conditions were analyzed by GC-MS. Recovery yield of SDE method from Amomi Fructus was measured by using camphor and standard calibration solution of camphor methanol solution and, the yield was 82.0%. Content of Hg was measured by mercury analyzer and contents of Cd, Pb, Cr, Mn, Co, Ni, Cu and Zn in Amomi Fructus, essential oils and solvent extracts were determined by ICP-MS (Inductively coupled plasma-mass spectrometer). Pb, Cd and Hg were measured in the concentration of 0.72 mg/kg, <0.10 mg/kg and 0.0023 mg/kg, respectively and these were below permission level of purity test. Contents of Mn, Cu and Zn in Amomi Fructus were 213 mg/kg, 8.29 mg/kg and 31.0 mg/kg, respectively and which were relatively higher than other metals such as Cr, Co and Ni. Metals such as Mn (0.65 ~ 9.08 mg/kg), Cu (1.16 ~ 4.40 mg/kg) and Zn (1.10 ~ 3.80 mg/kg) in essential oil and solvent extracts were detected. At this point it is not clear that the metals were cross-contaminated in the course of treating Amomi Fructus or metals were contained in Amomi Fructus. The influence evaluation toward biological model study of these metals in essential oil and solvent extracts will be needed.