상호정보 포텐셜과 델타 함수열 (cross-information potential and Dirac-delta functions, CIPD) 을 이용한 Equalizer 알고리듬이 충격성 잡음 하에서도 채널의 ISI 제거 성능이 우수한 반면, 블록 처리 방식으로 가중치 갱신을 행하고 있어서 계산량이 많다는 단점을 갖고 있다. 이 논문에서는 CIPD 알고리듬의 계산량을 크게 줄일 수 있는 방법으로서 매 샘플 시간마다 수행하는 CIPD 알고리듬의 이중 합산을 단일 합산으로 바꿀 수 있는 방법을 제시하였다. 실험 결과에서 제안된 방식은 기존 CIPD 알고리듬과 동일한 기울기 학습 곡선을 나타냈다. 또한 충격성 잡음 상황에서도 기존 방식이 블록처리 데이터 수에 비례하는 계산량을 나타낸 반면 제안된 방식은 이와 관계없이 더 작은 계산량을 유지하면서 CIPD 알고리듬과 동일한 기울기 값을 산출해낸다.
JSTS:Journal of Semiconductor Technology and Science
/
제17권2호
/
pp.174-179
/
2017
We designed the CMOS analog integrate and fire (I&F) neuron circuit for driving memristor based on resistive-switching random access memory (RRAM). And we fabricated the RRAM device that have $HfO_2$ switching layer using atomic layer deposition (ALD). The RRAM device has gradual set and reset characteristics. By spice modeling of the synaptic device, we performed circuit simulation of synaptic device and CMOS neuron circuit. The neuron circuit consists of a current mirror for spatial integration, a capacitor for temporal integration, two inverters for pulse generation, a refractory part, and finally a feedback part for learning of the RRAM. We emulated the spike-timing-dependent-plasticity (STDP) characteristic that is performed automatically by pre-synaptic pulse and feedback signal of the neuron circuit. By STDP characteristics, the synaptic weight, conductance of the RRAM, is changed without additional control circuit.
본 연구의 목적은 효과적인 SW 교육을 위한 SW 교육 콘텐츠의 주제 영역에 따른 연구 동향과 학습자의 선호를 분석하는 것이다. 이를 위해 먼저 최근 연구된 연구 문헌들과 교과서 및 교재들에 나타난 다양한 SW 교육 콘텐츠의 주제 영역을 분석하여 최근 동향을 파악하였다. 이를 바탕으로 본 연구에서는 스토리텔링, 게임, 미디어 아트, 교육학습 콘텐츠, 시뮬레이션, 실생활 중심 콘텐츠의 6가지 주제 영역으로 분류하여 정의하였으며, 대학생들을 대상으로 SW 구현 주제 선정 이유, 선정 방법, 선호 주제를 기준으로 하여 사례를 분석하였다. 사례 분석 결과, 학생들은 주제 선정 이유에 있어서는 주로 자신의 흥미와 교수자의 영향을 받으며 게임과 스토리텔링 주제 영역에 선호가 높게 나타났다. 이러한 연구는 앞으로 학습자 수준에 따라 균형 있는 SW 교육 콘텐츠 설계에 반영될 것을 기대한다.
기존의 기호주의 적 추론 시스템은 경직성 문제로 인하여 유연성을 결여하고 있다. 이는 기호주의 적 지식표현 체계가 지식의 유연한 의미구조를 충분히 반영하고 있지 못할 뿐 아니라 추론 방법도 논리를 바탕으로 하기 때문이다. 이러한 문제를 해결하기 위하여, 우리는 최근 인공 신경 망에 기반 한 유연한 지식표현과 추론을 위한 연결주의 적 의미 망(CSN)을 제안한 바 있다. CSN은 인간의 유사성과 연관성에 기반 하여 근사 추론과 상식추론을 수행할 수 있다. 그러나 CSN 모델에서는 상위개념간의 관계를 표현하는 데 있어서 단순한 전향 신경 망을 이용함으로써 상위개념간의 일반적이고 구조화된 관계를 표현하거나 변수의 표현 및 바인딩의 어려움과 같은 문제점이 있었다. CSN모델의 이런 문제점을 해결하기 위해 본 논문에서는 상위개념간의 일반적이고 구조화된 지식표현을 가능하게 하고 추론이 용이한 기호주의 표현 체계와 이 표현 체계 안에서 의미구조를 표현하고 학습할 수 있는 연결주의 학습 모델인 CSN을 결합한 기호-연결주의 통합 시스템 SymCSN(Symbolic CSN)을 제안하고, 실험을 통하여 제안한 시스템이 인간과 유사한 유연한 지식표현과 추론을 위한 모델임을 보인다.
표적 우선순위 할당은 다수의 표적이 존재하는 전술 환경에서 다기능 레이다(Multifunction Radar: MFR)가 중요한 표적을 추적하고 레이다 자원을 효율적으로 관리하기 위해 필요한 기능이다. 본 논문에서는 레이다에서 수집한 정보로부터 표적에 대한 우선순위를 산출하는 인공 신경망(Artificial Neural Network: ANN) 모델을 구현한다. 더 나아가, 기존의 경사 하강법(gradient descent) 기반 역전파(backpropagation) 알고리즘을 발전시켜 표적 우선순위 할당에 더욱 적합한 최급 강하법(steepest descent) 기반 신경망 학습 알고리즘을 제안한다. 시뮬레이션에서는 훈련 데이터와 신경망의 결과값 사이의 오차와 특정 테스트 시나리오에서 할당된 우선순위의 합리성을 분석하여 제안된 방법의 성능을 확인한다.
본 논문에서는 변화하는 환경에서 에이전트의 인지 정보로부터 움직이는 물체의 운동모델을 미리 알 수 없는 경우에도 적용할 수 있는 적응적인 행동을 생성하는 방법을 제안한다. 전통적인 에이전트의 지능제어 방법은 환경에 대해 알고 있는 정보를 이용한다는 제약 때문에 강건하지만 다양하고 복잡한 환경에 적용할 수 얼었다. 환경에 대한 정보가 없는 상황에서 에이전트가 자율적으로 행동하기 위해서는 행동 기반의 방법이 적합하며, 실제와 같은 변화는 환경에서 에이전트의 적응적 행동을 위해서는 상황을 미리 추론하고 대처하는 능력이 필요하다. 움직이는 장애물 피하기는 변화하는 환경에서의 적응적 행동생성의 가능성을 보여줄 수 있는 문제이기 때문에 다양한 방법으로 연구되고 있다. 본 논문에서는 고정된 장애물뿐만 아니라 움직이는 장애물을 인지하고 피하는 적응적인 행동을 생성하기 위한 2단계의 제어 구조를 제안한다. 1단계는 상황을 인지하고 자율적으로 행동을 생성하는 행동 네트워크 구조이고 2단계는 변화하는 상황을 추론하고 제어정보를 1단계로 전달하는 베이지안 네트워크 구조이다. 시뮬레이터를 이용한 실험을 통해 제안한 방법으로 고정된 장애물과 움직이는 장애물을 피하고 목적지를 찾아가는 것을 확인할 수 있었다.
최근 원격교육, 디지털 콘텐츠 및 IPTV를 포함한 멀티미디어 데이터를 다수의 수신자들에게 멀티캐스트 전송기술을 이용하여 전송하는 방법들에 대한 논의가 활발히 이루어지고 있다. 이를 위하여 크게 소스기반의 트리 구성과 센터 기반의 트리 구성 방식의 프로토콜이 제안되고 있으며, 특히 센터 기반의 트리 구성시 RP (Rendezvous Point) 라우터를 선정하기 위한 여러가지 알고리즘들이 제안되었다. 주요 알고리즘들에서는 RP와 멤버들사이의 최대거리, 평균거리 및 예측거리 등의 measure를 이용하여 이의 값들을 최소화하는 라우터를RP로 지정한다. 본 논문에서는 메시 네트워크 하에서 소스 및 멤버들이 랜덤하게 지정되는 상황을 가정하는 경우 효율적인 RP 선정 알고리즘을 제안한다.
본 논문에서는 미지의 비선형 시스템을 제어하기 위해 웨이블릿 신경 회로망을 이용한 간접 적응 제어기를 설계한다. 제안 된 간접 적응 제어기는 웨이블릿 신경 회로망을 이용한 동정 모델과 제어기로 구성된다. 여기서 동정 모델과 제어기에 사용되는 웨이블릿 신경 회로망은 시간과 주파수에 대한 정보를 동시에 포함하는 웨이블릿의 특성을 가지고 있기 때문에 다층구조 신경회로망과 방사 기저 함수 신경회로망에 보다 더 빠른 수렴특성을 보인다. 웨이블릿 신경 회로망의 학습방법은 경사 하강법, 유전알고리듬, DNA 기법등 여러 가지가 있으나, 본 논문에서는 확장 칼만 필터를 기반으로 한 학습 방법을 제안한다. 확장 칼만 필터 학습 방법은 계산이 복잡하기는 하지만 학습되어 갱신되는 파라미터의 이전 데이터 정보를 이용하는 특성 때문에 매우 빠른 수렴 특성을 보인다. 본 논문에서는 Buffing 시스템과 1축 머니퓰레이터에 대한 컴퓨터 모치실험을 통해 제안한 확장 칼만 필터 학습 방법을 이용한 간접 적응 제어기가 일반적인 경사 하강법을 이용한 경우보다 우수함을 보인다.
The main purpose of tunnel ventilation system is to maintain CO pollutant and VI (visibility index) under an adequate level to provide drivers with safe driving condition. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement teaming (RL) method. RL is a goal-directed teaming of a mapping from situations to actions. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. Constructing the reward of the tunnel ventilation system, two objectives listed above are included. RL algorithm based on actor-critic architecture and natural gradient method is adopted to the system. Also, the recursive least-squares (RLS) is employed to the learning process to improve the efficiency of the use of data. The simulation results performed with real data collected from existing tunnel are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.
본 논문에서는 다중 입$\cdot$출력을 갖는 이동 로봇의 경로 추종을 위해 웨이블깃 신경 회로망에 기반한 예측 제어 방법을 제안한다. 제안된 방법에서 상태 예측기로는 학습 능력이 뛰어난 신경 회로망의 특성 및 웨이블릿 분해의 특성을 합성한 웨이블릿 신경 회로망을 사용한다. 예측기는 경사 하강법을 사용하여 웨이블릿 신경회로망의 출력에 대한 실제 이동 로봇의 상태 오차를 최소화하도록 학습된다. 또한 이동 로봇의 제어 신호인 직진 속도 및 각속도는 추종하고자 하는 기준 경로에 대한 이동 로봇의 예측 상태 오차를 이용하여 정의된 비용 함수를 최소화하도록 구해진다. 컴퓨터 모의 실험에서 변화되는 기준 경로에 대한 경로 추종 성능을 통해 제안한 예측 제어 시스템의 적용 가능성 및 효율성을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.