• 제목/요약/키워드: Simulation-based learning

검색결과 1,097건 처리시간 0.028초

상호 정보 포텐셜과 델타함수를 이용한 블라인드 알고리듬의 복잡도 개선 (Complexity Reduction of Blind Algorithms based on Cross-Information Potential and Delta Functions)

  • 김남용
    • 인터넷정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.71-77
    • /
    • 2014
  • 상호정보 포텐셜과 델타 함수열 (cross-information potential and Dirac-delta functions, CIPD) 을 이용한 Equalizer 알고리듬이 충격성 잡음 하에서도 채널의 ISI 제거 성능이 우수한 반면, 블록 처리 방식으로 가중치 갱신을 행하고 있어서 계산량이 많다는 단점을 갖고 있다. 이 논문에서는 CIPD 알고리듬의 계산량을 크게 줄일 수 있는 방법으로서 매 샘플 시간마다 수행하는 CIPD 알고리듬의 이중 합산을 단일 합산으로 바꿀 수 있는 방법을 제시하였다. 실험 결과에서 제안된 방식은 기존 CIPD 알고리듬과 동일한 기울기 학습 곡선을 나타냈다. 또한 충격성 잡음 상황에서도 기존 방식이 블록처리 데이터 수에 비례하는 계산량을 나타낸 반면 제안된 방식은 이와 관계없이 더 작은 계산량을 유지하면서 CIPD 알고리듬과 동일한 기울기 값을 산출해낸다.

CMOS Analog Integrate-and-fire Neuron Circuit for Driving Memristor based on RRAM

  • Kwon, Min-Woo;Baek, Myung-Hyun;Park, Jungjin;Kim, Hyungjin;Hwang, Sungmin;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.174-179
    • /
    • 2017
  • We designed the CMOS analog integrate and fire (I&F) neuron circuit for driving memristor based on resistive-switching random access memory (RRAM). And we fabricated the RRAM device that have $HfO_2$ switching layer using atomic layer deposition (ALD). The RRAM device has gradual set and reset characteristics. By spice modeling of the synaptic device, we performed circuit simulation of synaptic device and CMOS neuron circuit. The neuron circuit consists of a current mirror for spatial integration, a capacitor for temporal integration, two inverters for pulse generation, a refractory part, and finally a feedback part for learning of the RRAM. We emulated the spike-timing-dependent-plasticity (STDP) characteristic that is performed automatically by pre-synaptic pulse and feedback signal of the neuron circuit. By STDP characteristics, the synaptic weight, conductance of the RRAM, is changed without additional control circuit.

SW 교육 콘텐츠의 주제 영역에 대한 연구 동향과 학습자 선호 분석 (Analysis of Research Trends and Learners' Preference for Subject Area of SW Education Content)

  • 전수진
    • 컴퓨터교육학회논문지
    • /
    • 제20권1호
    • /
    • pp.39-47
    • /
    • 2017
  • 본 연구의 목적은 효과적인 SW 교육을 위한 SW 교육 콘텐츠의 주제 영역에 따른 연구 동향과 학습자의 선호를 분석하는 것이다. 이를 위해 먼저 최근 연구된 연구 문헌들과 교과서 및 교재들에 나타난 다양한 SW 교육 콘텐츠의 주제 영역을 분석하여 최근 동향을 파악하였다. 이를 바탕으로 본 연구에서는 스토리텔링, 게임, 미디어 아트, 교육학습 콘텐츠, 시뮬레이션, 실생활 중심 콘텐츠의 6가지 주제 영역으로 분류하여 정의하였으며, 대학생들을 대상으로 SW 구현 주제 선정 이유, 선정 방법, 선호 주제를 기준으로 하여 사례를 분석하였다. 사례 분석 결과, 학생들은 주제 선정 이유에 있어서는 주로 자신의 흥미와 교수자의 영향을 받으며 게임과 스토리텔링 주제 영역에 선호가 높게 나타났다. 이러한 연구는 앞으로 학습자 수준에 따라 균형 있는 SW 교육 콘텐츠 설계에 반영될 것을 기대한다.

SymCSN : 유연한 지식 표현 및 추론을 위한 기호-연결주의 모델 (SymCSN : a Neuro-Symbolic Model for Flexible Knowledge Representation and Inference)

  • 노희섭;안홍섭;김명원
    • 인지과학
    • /
    • 제10권4호
    • /
    • pp.71-83
    • /
    • 1999
  • 기존의 기호주의 적 추론 시스템은 경직성 문제로 인하여 유연성을 결여하고 있다. 이는 기호주의 적 지식표현 체계가 지식의 유연한 의미구조를 충분히 반영하고 있지 못할 뿐 아니라 추론 방법도 논리를 바탕으로 하기 때문이다. 이러한 문제를 해결하기 위하여, 우리는 최근 인공 신경 망에 기반 한 유연한 지식표현과 추론을 위한 연결주의 적 의미 망(CSN)을 제안한 바 있다. CSN은 인간의 유사성과 연관성에 기반 하여 근사 추론과 상식추론을 수행할 수 있다. 그러나 CSN 모델에서는 상위개념간의 관계를 표현하는 데 있어서 단순한 전향 신경 망을 이용함으로써 상위개념간의 일반적이고 구조화된 관계를 표현하거나 변수의 표현 및 바인딩의 어려움과 같은 문제점이 있었다. CSN모델의 이런 문제점을 해결하기 위해 본 논문에서는 상위개념간의 일반적이고 구조화된 지식표현을 가능하게 하고 추론이 용이한 기호주의 표현 체계와 이 표현 체계 안에서 의미구조를 표현하고 학습할 수 있는 연결주의 학습 모델인 CSN을 결합한 기호-연결주의 통합 시스템 SymCSN(Symbolic CSN)을 제안하고, 실험을 통하여 제안한 시스템이 인간과 유사한 유연한 지식표현과 추론을 위한 모델임을 보인다.

  • PDF

최급 강하법 기반 인공 신경망을 이용한 다기능 레이다 표적 우선순위 할당에 대한 연구 (Target Prioritization for Multi-Function Radar Using Artificial Neural Network Based on Steepest Descent Method)

  • 정남훈;이성현;강민석;구창우;김철호;김경태
    • 한국전자파학회논문지
    • /
    • 제29권1호
    • /
    • pp.68-76
    • /
    • 2018
  • 표적 우선순위 할당은 다수의 표적이 존재하는 전술 환경에서 다기능 레이다(Multifunction Radar: MFR)가 중요한 표적을 추적하고 레이다 자원을 효율적으로 관리하기 위해 필요한 기능이다. 본 논문에서는 레이다에서 수집한 정보로부터 표적에 대한 우선순위를 산출하는 인공 신경망(Artificial Neural Network: ANN) 모델을 구현한다. 더 나아가, 기존의 경사 하강법(gradient descent) 기반 역전파(backpropagation) 알고리즘을 발전시켜 표적 우선순위 할당에 더욱 적합한 최급 강하법(steepest descent) 기반 신경망 학습 알고리즘을 제안한다. 시뮬레이션에서는 훈련 데이터와 신경망의 결과값 사이의 오차와 특정 테스트 시나리오에서 할당된 우선순위의 합리성을 분석하여 제안된 방법의 성능을 확인한다.

지능형 에이전트의 움직이는 장애물 충돌 회피를 위한 베이지안 추론 주도형 행동 네트워크 구조 (Bayesian Inference driven Behavior-Network Architecture for Intelligent Agent to Avoid Collision with Moving Obstacles)

  • 민현정;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권8호
    • /
    • pp.1073-1082
    • /
    • 2004
  • 본 논문에서는 변화하는 환경에서 에이전트의 인지 정보로부터 움직이는 물체의 운동모델을 미리 알 수 없는 경우에도 적용할 수 있는 적응적인 행동을 생성하는 방법을 제안한다. 전통적인 에이전트의 지능제어 방법은 환경에 대해 알고 있는 정보를 이용한다는 제약 때문에 강건하지만 다양하고 복잡한 환경에 적용할 수 얼었다. 환경에 대한 정보가 없는 상황에서 에이전트가 자율적으로 행동하기 위해서는 행동 기반의 방법이 적합하며, 실제와 같은 변화는 환경에서 에이전트의 적응적 행동을 위해서는 상황을 미리 추론하고 대처하는 능력이 필요하다. 움직이는 장애물 피하기는 변화하는 환경에서의 적응적 행동생성의 가능성을 보여줄 수 있는 문제이기 때문에 다양한 방법으로 연구되고 있다. 본 논문에서는 고정된 장애물뿐만 아니라 움직이는 장애물을 인지하고 피하는 적응적인 행동을 생성하기 위한 2단계의 제어 구조를 제안한다. 1단계는 상황을 인지하고 자율적으로 행동을 생성하는 행동 네트워크 구조이고 2단계는 변화하는 상황을 추론하고 제어정보를 1단계로 전달하는 베이지안 네트워크 구조이다. 시뮬레이터를 이용한 실험을 통해 제안한 방법으로 고정된 장애물과 움직이는 장애물을 피하고 목적지를 찾아가는 것을 확인할 수 있었다.

멀티캐스트 서비스를 위한 센터기반 공유형 경로 지정 방법 (Center-based Shared Route Decision Algorithms for Multicasting Services)

  • 조기성;장희선;김동휘
    • 한국콘텐츠학회논문지
    • /
    • 제7권4호
    • /
    • pp.49-55
    • /
    • 2007
  • 최근 원격교육, 디지털 콘텐츠 및 IPTV를 포함한 멀티미디어 데이터를 다수의 수신자들에게 멀티캐스트 전송기술을 이용하여 전송하는 방법들에 대한 논의가 활발히 이루어지고 있다. 이를 위하여 크게 소스기반의 트리 구성과 센터 기반의 트리 구성 방식의 프로토콜이 제안되고 있으며, 특히 센터 기반의 트리 구성시 RP (Rendezvous Point) 라우터를 선정하기 위한 여러가지 알고리즘들이 제안되었다. 주요 알고리즘들에서는 RP와 멤버들사이의 최대거리, 평균거리 및 예측거리 등의 measure를 이용하여 이의 값들을 최소화하는 라우터를RP로 지정한다. 본 논문에서는 메시 네트워크 하에서 소스 및 멤버들이 랜덤하게 지정되는 상황을 가정하는 경우 효율적인 RP 선정 알고리즘을 제안한다.

확장 칼만 필터 학습 방법 기반 웨이블릿 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어 (Indirect Adaptive Control of Nonlinear Systems Using a EKF Learning Algorithm Based Wavelet Neural Network)

  • 김경주;최윤호;박진배
    • 한국지능시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.720-729
    • /
    • 2005
  • 본 논문에서는 미지의 비선형 시스템을 제어하기 위해 웨이블릿 신경 회로망을 이용한 간접 적응 제어기를 설계한다. 제안 된 간접 적응 제어기는 웨이블릿 신경 회로망을 이용한 동정 모델과 제어기로 구성된다. 여기서 동정 모델과 제어기에 사용되는 웨이블릿 신경 회로망은 시간과 주파수에 대한 정보를 동시에 포함하는 웨이블릿의 특성을 가지고 있기 때문에 다층구조 신경회로망과 방사 기저 함수 신경회로망에 보다 더 빠른 수렴특성을 보인다. 웨이블릿 신경 회로망의 학습방법은 경사 하강법, 유전알고리듬, DNA 기법등 여러 가지가 있으나, 본 논문에서는 확장 칼만 필터를 기반으로 한 학습 방법을 제안한다. 확장 칼만 필터 학습 방법은 계산이 복잡하기는 하지만 학습되어 갱신되는 파라미터의 이전 데이터 정보를 이용하는 특성 때문에 매우 빠른 수렴 특성을 보인다. 본 논문에서는 Buffing 시스템과 1축 머니퓰레이터에 대한 컴퓨터 모치실험을 통해 제안한 확장 칼만 필터 학습 방법을 이용한 간접 적응 제어기가 일반적인 경사 하강법을 이용한 경우보다 우수함을 보인다.

RLS 기반의 Natural Actor-Critic 알고리즘을 이용한 터널 환기제어기 설계 (Tunnel Ventilation Controller Design Employing RLS-Based Natural Actor-Critic Algorithm)

  • 주백석;김동남;홍대희;박주영;정진택;권태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.53-54
    • /
    • 2006
  • The main purpose of tunnel ventilation system is to maintain CO pollutant and VI (visibility index) under an adequate level to provide drivers with safe driving condition. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement teaming (RL) method. RL is a goal-directed teaming of a mapping from situations to actions. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. Constructing the reward of the tunnel ventilation system, two objectives listed above are included. RL algorithm based on actor-critic architecture and natural gradient method is adopted to the system. Also, the recursive least-squares (RLS) is employed to the learning process to improve the efficiency of the use of data. The simulation results performed with real data collected from existing tunnel are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  • PDF

이동 로봇의 경로 추종을 위한 웨이블릿 신경 회로망 기반 일반형 예측 제어에 관한 연구 (A Study on Wavelet Neural Network Based Generalized Predictive Control for Path Tracking of Mobile Robots)

  • 송용태;오준섭;박진배;최윤호
    • 한국지능시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.457-466
    • /
    • 2005
  • 본 논문에서는 다중 입$\cdot$출력을 갖는 이동 로봇의 경로 추종을 위해 웨이블깃 신경 회로망에 기반한 예측 제어 방법을 제안한다. 제안된 방법에서 상태 예측기로는 학습 능력이 뛰어난 신경 회로망의 특성 및 웨이블릿 분해의 특성을 합성한 웨이블릿 신경 회로망을 사용한다. 예측기는 경사 하강법을 사용하여 웨이블릿 신경회로망의 출력에 대한 실제 이동 로봇의 상태 오차를 최소화하도록 학습된다. 또한 이동 로봇의 제어 신호인 직진 속도 및 각속도는 추종하고자 하는 기준 경로에 대한 이동 로봇의 예측 상태 오차를 이용하여 정의된 비용 함수를 최소화하도록 구해진다. 컴퓨터 모의 실험에서 변화되는 기준 경로에 대한 경로 추종 성능을 통해 제안한 예측 제어 시스템의 적용 가능성 및 효율성을 보인다.