• Title/Summary/Keyword: Simulation acceleration

Search Result 942, Processing Time 0.031 seconds

Numerical simulation of a hall thruster for orbit transfer and correction of small satellites (소형위성의 궤도 천이 및 보정을 위한 홀 방식 전기추력기의 수치모사)

  • Seon Jong-Ho;Lee Jong-Sub;Lim Yu-Bong;Choe Won-Ho;Lee Hae-June
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.66-69
    • /
    • 2006
  • A two-dimensional Particle-In-Cell (PIC) simulation of a Hall thruster is presented. The thruster is being developed for orbit transfer and correction of a small satellite. Preliminary investigation of the simulation result finds well separated acceleration and ionization layers. The simulation further shows that collisional ionization of the xenon neutrals allows sufficient acceleration of the ionized plasmas that is adequate for the intended correction and transfer of small satellite orbits. Anticipated performance of the thruster based upon the present results will be calculated.

  • PDF

Development of a Gap Acceptance Model for the Simulation of Merging Area on Urban Freeways (모의실험 전산모형을 위한 도심고속도로 합류부 간격수락행태모형 개발)

  • 김준현;김진태;장명순;문영준
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.6
    • /
    • pp.115-128
    • /
    • 2002
  • Traffic engineers have developed and implemented various microscopic simulation models to verify the traffic performance and to prevent the expected problems. The existing microscopic simulation models categorize drivers into several types to reflect various drivers' driving patterns but miss the dynamics of drivers' behavior changed based upon the traffic conditions. It was found from the field data collected from two different merging sections on an urban freeway in Seoul, Korea, that the drivers' critical gap distributions are changed based on (1) the traffic density on the adjacent lane to the acceleration lane and (2) the opportunities left to merge in terms of distance to the end of acceleration lane. It was also found from the study that the drivers' critical gap distributions follow the Normal distribution. and its mean and variance change while a vehicle progresses on an acceleration lane. This paper proposes a new gap-acceptance model developed based on a set of drivers' critical gap distributions from each segment on the acceleration lanes. Through the comparison study between the field data and the results from the simulation utilizing the proposed model, it was verified that (1) the distribution of merging points on an acceleration lane to the adjacent main lane at different density levels, (2) the size of the gap accepted for merging and (3) the speed difference between the merging vehicle and the trailing vehicle at the time of merging are statistically identical to the field data at 95% confidence level.

Simulation method of ground motion matching for multiple targets and effects of fitting parameter variation on the distribution of PGD

  • Wang, Shaoqing;Yu, Ruifang;Li, Xiaojun;Lv, Hongshan
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.563-573
    • /
    • 2019
  • When generating spectrum-compatible artificial ground motion in engineering practices, the effect of the variation in fitting parameters on the distribution of the peak ground displacement (PGD) has not yet drawn enough attention. In this study, a method for simulating ground motion matching for multiple targets is developed. In this method, a frequency-dependent amplitude envelope function with statistical parameters is introduced to simulate the nonstationarity of the frequency in earthquake ground motion. Then, several groups of time-history acceleration with different temporal and spectral nonstationarities were generated to analyze the effect of nonstationary parameter variations on the distribution of PGD. The following conclusions are drawn from the results: (1) In the simulation of spectrum-compatible artificial ground motion, if the acceleration time-history is generated with random initial phases, the corresponding PGD distribution is quite discrete and an uncertain number of PGD values lower than the limit value are observed. Nevertheless, the mean values of PGD always meet the requirement in every group. (2) If the nonstationary frequencies of the ground motion are taken into account when fitting the target spectrum, the corresponding PGD values will increase. A correlation analysis shows that the change in the mean and the dispersion values, from before the frequencies are controlled to after, correlates with the modal parameters of the predominant frequencies. (3) Extending the maximum period of the target spectrum will increase the corresponding PGD value and, simultaneously, decrease the PGD dispersion. Finally, in order to control the PGD effectively, the ground motion simulation method suggested in this study was revised to target a specified PGD. This novel method can generate ground motion that satisfies not only the required precision of the target spectrum, peak ground acceleration (PGA), and nonstationarity characteristics of the ground motion but also meets the required limit of the PGD, improving engineering practices.

A Study on the Evaluation of Seakeeping Performance with Ship Types (선박 종류에 따른 내항성능 평가에 관한 연구)

  • 김순갑;박문수;공길영
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.2
    • /
    • pp.19-40
    • /
    • 1994
  • Several factors can be chosen for evaluating seakeeping performance, such as deck wetness, propeller racing, slamming, rolling, vertical acceleration and vertical bending moment, in consi-deration of the safety of human being, cargo and ship. In fact, there are few developments for an evalua-tion method of seakeepting performance correponding with each ship's characteristics. The purpose of this paper is to develop an quantitative evaluation method of seakeeping performance according to ship types. The scope and the method of this study are as follow. (1) Obtain each response amplitude of ship's motion in waves by Ordinary Strip Method and apply it to short-crested, irregular wave for random process of the factors on seakeeping performance. (2) Define the evaluation index, the dangerousness, the maximum dangerousness and the evaluation diagram. (3) Figure out the different characteristics according to ship types by computer simulation of evaluating seakeeping performance. (4) Adopt vertical acceleration and one of rolling or lateral acceleration as the factors on seakeeping performance by clarifying the correlation of stochastic process. This study developed an evaluation method coincident with each ship's characteristics, and suggested a device for application to actual ship. This method might be useful in developing the practical system of seakeeping performance in accordance with ship types. The ship models for computer simulation are 175m container ship types, 93m tranning ship HANARA as passenger ship type, 259m bulk-carrier type and 164m pure car-carrier type.

  • PDF

Numerical validation of Multiplex Acceleration Model for earthquake induced landslides

  • Zheng, Lu;Chen, Guangqi;Zen, Kouki;Kasama, Kiyonobu
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.39-53
    • /
    • 2012
  • Due to strong ground motion of earthquake, the material in the landslide can travel a significant distance from the source. A new landslide model called Multiplex Acceleration Model (MAM) has been proposed to interpret the mechanism of long run-out movement of this type of landslide, considering earthquake behaviors on slope and landslide materials. In previous study, this model was verified by a shaking table test. However, there is a scale limitation of shaking table test to investigate MAM in detail. Thus, numerical simulation was carried out in this study to validate MAM under full scale. A huge rock ejected and A truck threw upwards by seismic force during Wenchuan Earthquake (Ms. 8.0) was discussed based on the simulation results. The results indicate that collisions in P-phase of earthquake and trampoline effect are important behaviors to interpret the mechanism of long run-out and high velocity. The results show that MAM is acceptable and applicable.

ACCELERATION OF COSMIC RAYS AT COSMIC SHOCKS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Nonthermal particles can be produced due to incomplete thermalization at collisionless shocks and further accelerated to very high energies via diffusive shock acceleration. In a previous study we explored the cosmic ray (CR) acceleration at cosmic shocks through numerical simulations of CR modified, quasi-parallel shocks in 1D plane-parallel geometry with the physical parameters relevant for the shocks emerging in the large scale structure formation of the universe (Kang & Jones 2002). Specifically we considered pancake shocks driven by accretion flows with $U_o = 1500 km\;s^{-l}$ and the preshock gas temperature of $T_o = 10^4 - 10^8K$. In order to consider the CR acceleration at shocks with a broader range of physical properties, in this contribution we present additional simulations with accretion flows with $U_o = 75 - 1500 km\;s^{-l}$ and $T_o = 10^4K$. We also compare the new simulation results with those reported in the previous study. For a given Mach number, shocks with higher speeds accelerate CRs faster with a greater number of particles, since the acceleration time scale is $t_{acc}\;{\propto}\;U_o^{-2}$. However, two shocks with a same Mach number but with different shock speeds evolve qualitatively similarly when the results are presented in terms of diffusion length and time scales. Therefore, the time asymptotic value for the fraction of shock kinetic energy transferred to CRs is mainly controlled by shock Mach number rather than shock speed. Although the CR acceleration efficiency depends weakly on a well-constrained injection parameter, $\epsilon$, and on shock speed for low shock Mach numbers, the dependence disappears for high shock Mach numbers. We present the 'CR energy ratio', ${\phi}(M_s)$, for a wide range of shock parameters and for $\epsilon$ = 0.2 - 0.3 at terminal time of our simulations. We suggest that these values can be considered as time-asymptotic values for the CR acceleration efficiency, since the time-dependent evolution of CR modified shocks has become approximately self-similar before the terminal time.

Covariance analysis describing function technique for missile performance (CADET를 이용한 가로방향 힘의 Saturation에 대한 미사일의 성능해석)

  • 김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.456-459
    • /
    • 1993
  • CADET is used to analyze the performance of the missile. Miss distance is calculated for a given lateral fin force saturation level due to the aerodynamic characteristics, target acceleration, and glint and fading noises which is assumed as Gaussian noises. As .alpha.-.betha. filter is studied to attenuate the noises, the results are compared with those of without filter. For the easy simulation, the transfer function of a discrete .alpha.-.betha. filter is converted into the continuous model. Simulation results show that the results of CADET simulation is similar to those of Monte-Carlo simulation. Moreover CADET is the better in computing time demand.

  • PDF

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.

Analysis of heat leak with the car acceleration for LNG tank of Natural Gas Vehicle (천연가스자동차용 LNG용기에서의 차량가속도와 Heat leak 관계 해석)

  • Minkasheva, Alena;Yu, Young-Min;Park, Yong-Kook;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.11-20
    • /
    • 2006
  • LNG is a valuable fuel since it offers some environmental, energy security and economic benefits over diesel. It could be used mainly in heavy-duty trucks and buses. Car acceleration induces the slope angle of the liquid fuel in the tank. Slope angle changes the surface area wetted by liquid fuel and consequently heat leak to the tank. This research is a result of numerical simulation of the heat leak with the car acceleration to LNG tank. The "Pro-HeatLeak" Fortran program is developed and the verification test of the developed program is done. The difference between numerical results and calculated results from MathCad verification test is less than 0.07 percent. The smallest heat leak is correspond to the case without oscillation. For the high car acceleration the value of heat leak is greater than that for the small acceleration. The difference between maximum and minimum heat leak for 10 gallons of fuel vapor in the tank is about 10 percent.

  • PDF