• 제목/요약/키워드: Simulation acceleration

검색결과 942건 처리시간 0.034초

차량 시뮬레이터 접목을 위한 실시간 인체거동 해석기법 (Real-Time Analysis of Occupant Motion for Vehicle Simulator)

  • 오광석;손권;최경현
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.969-975
    • /
    • 2002
  • Visual effects are important cues for providing occupants with virtual reality in a vehicle simulator which imitates real driving. The viewpoint of an occupant is sensitively dependent upon the occupant's posture, therefore, the total human body motion must be considered in a graphic simulator. A real-time simulation is required for the dynamic analysis of complex human body motion. This study attempts to apply a neural network to the motion analysis in various driving situations. A full car of medium-sized vehicles was selected and modeled, and then analyzed using ADAMS in such driving conditions as bump-pass and lane-change for acquiring the accelerations of chassis of the vehicle model. A hybrid III 50%ile adult male dummy model was selected and modeled in an ellipsoid model. Multibody system analysis software, MADYMO, was used in the motion analysis of an occupant model in the seated position under the acceleration field of the vehicle model. Acceleration data of the head were collected as inputs to the viewpoint movement. Based on these data, a back-propagation neural network was composed to perform the real-time analysis of occupant motions under specified driving conditions and validated output of the composed neural network with MADYMO result in arbitrary driving scenario.

Cooperative Manipulation of a Virtual Object by Multiple Remote Users

  • Choi, Hyouk-Ryeol;Ryew, Sung-Moo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.956-967
    • /
    • 2000
  • In this paper, we explore the issues of force display in the cooperative virtual environment shared by multiple users distributed over the network with heterogeneous hardware platforms. The proposed method is to cope with the problem of small time delay and the difference of sampling rate in the distributed configuration. In the proposed approach the interaction forces of the participants are just treated as the independent sources of acceleration. Thus the action of a participant simply changes the acceleration of the virtual object and consequently the states of the virtual object will be updated. When the updated states are reported to all the participants, the information on the time of state changes is delivered, too. Employing the discrete state information updated by the other users, each user modifies his own virtual environment and pseudo-realtime simulation can be realized. Excluding the software interface and the communication technique, it is proposed the simulation method for the operation of respective users and the way of calculating the driving input to the display device. For experimental verification we construct a cooperative virtual environment shared by two remote users and outline the results of experiments.

  • PDF

Numerical investigations on the along-wind response of a vibrating fence under wind action

  • Fang, Fuh-Min;Ueng, Jin-Min;Chen, J.C.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.329-336
    • /
    • 2002
  • The along-wind response of a surface-mounted elastic fence under the action of wind was investigated numerically. In the computations, two sets of equations, one for the simulation of the unsteady turbulent flow and the other for the calculation of the dynamic motion of the fence, were solved alternatively. The resulting time-series tip response of the fence as well as the flow fields were analyzed to examine the dynamic behaviors of the two. Results show that the flow is unsteady and is dominated by two frequencies: one relates to the shear layer vortices and the other one is subject to vortex shedding. The resulting unsteady wind load causes the fence to vibrate. The tip deflection of the fence is periodic and is symmetric to an equilibrium position, corresponding to the average load. Although the along-wind aerodynamic effect is not significant, the fluctuating quantities of the tip deflection, velocity and acceleration are enhanced as the fundamental frequency of the fence is near the vortex or shedding frequency of the flow due to the occurrence of resonance. In addition, when the fence is relatively soft, higher mode response can be excited, leading to significant increases of the variations of the tip velocity and acceleration.

건설장비용 동력전달계의 관성영역에서의 자기학습 제어기법 (Self-Learning Supervisory Control of a Power Transmission System in a Construction Vehicle during Inertia Phase)

  • 최길우;한진오;허재웅;조영만;이교일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.723-729
    • /
    • 2001
  • Electro-hydraulic shift control of a vehicle automatic transmission has been predominantly carried out via an open-loop control based on numerous time-consuming calibrations. Despite remarkable success in practice, the variations of system characteristics inevitably deteriorate the performance of the tuned open-loop controller. As a result, the controller parameters need to be continuously updated in order to maintain satisfactory shift quality. This paper presents a self-learning algorithm for automatic transmission shift control in a construction vehicle during inertia phase. First, an observer reconstructs the turbine acceleration signal (impossible to measure in a construction vehicle) from the readily accessible turbine speed measurement. Then, a control algorithm based on a quadratic function of the turbine acceleration is shown to guarantee the asymptotic convergence (within a specified target bound) of the error between the actual and the desired turbine accelerations. A Lyapunov argument plays a crucial role in deriving adaptive laws for control parameters. The simulation and hardware-in-the-loop simulation (HILS) studies show that the proposed algorithm actually delivers the promise of satisfactory performance despite the system characteristics variations and uncertainties.

  • PDF

동력성능 향상을 위한 차량용 자동 변속기의 최적 변속비 및 변속 패턴 결정에 관한 연구 (A study on the determination of gear ratios and shifting pattern of automatic transmission for increasing vehicle performance)

  • 조선휘;류길하;김태용
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1436-1445
    • /
    • 1990
  • 본 연구에서는 차량의 가속성능, 일정시간후 도달거리, 추월 가속성능 등의 동력성능 향상과 차량 요구성능을 고려한 최적 감속비의 결정을 고찰하였다. 변속비 결정의 선행 연구로서 정해진 차량 제원, 엔진 성능과 정해진 변속기에 대하여 차량의 동력성능을 예측, 평가하는 연구의 수행이 요구된다. 이를 위하여 본 논문에서는 기 존의 차량에 대하여 동력 성능을 평가하는 시뮬레이션 프로그램을 개발하여 실차의 제 작과 시험에 앞서 그 동력 성능을 예측, 평가하고 또한 이를 바탕으로 최적 설계기법 에 의하여 엔진 특성을 고려한 변속기의 최적 감속비 및 변속패턴을 결정하는데 촛점 을 두었다.

반도체 반송 시스템을 위한 축소형 자기부상 열차 시스템 개발 (Development of Maglev Vehicle for Semiconductor Transport System in Small Scale)

  • 성소영;최장영;성호경;조한욱;장석명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.616-618
    • /
    • 2008
  • This paper propose nonlinear electromagnet suspension system model and defines electromagnet design specification of Maglev vehicle for transport system of semiconductor manufacturing line. The bandwidth of the acceleration sensor is defined and manufactured using i-mems technique acceleration sensor from this Nonlinear electromagnet suspension model. Through the simulation of non-linear model it was possible to compare the gain with the experiment to confirm the accuracy of the nonlinear suspension system. Till now mainly linear model has been used in many electromagnet suspension system, which results different gains in simulation and experiments. This more accurate non-linear model can be applied in many ways in designing electromagnet suspension systems.

  • PDF

Investigation of the effects of free-stream turbulence on wind-induced responses of tall building by Large Eddy Simulation

  • Li, Q.S.;Hu, G.;Yan, Bo-Wen
    • Wind and Structures
    • /
    • 제18권6호
    • /
    • pp.599-618
    • /
    • 2014
  • In this study, a square rectangular tall building is considered to investigate the effects of turbulence integral length scale and turbulence intensity on the along-wind responses, across-wind responses and torsional responses of the tall building by Large Eddy Simulation (LES). A recently proposed inflow turbulence generator called the discretizing and synthesizing random flow generation (DSRFG) approach is applied to simulate turbulent flow fields. It has been proved that the approach is able to generate a fluctuating turbulent flow field satisfying any given spectrum, desired turbulence intensity and wind speed profiles. Five profiles of turbulence integral length scale and turbulence intensity are respectively generated for the inflow fields by the DSRFG approach for investigating the effects of turbulence integral length scale and turbulence intensity on the wind-induced responses of the tall building. The computational results indicate that turbulence integral length scale does not have significant effect on the along-wind (displacement, velocity and acceleration) responses, across-wind displacement and velocity responses, while the across-wind acceleration and torsional responses vary without a clear rule with the parameter. On the other hand, the along-wind, across-wind and torsional responses increase with the growth of turbulence intensity.

기계시스템의 공차에 의한 속도 및 가속도 오차의 해석 (Velocity and Acceleration Error Analysis of Planar Mechanism Due to Tolerances)

  • 이세정
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.351-358
    • /
    • 1994
  • A probabilistic model and analysis methods to determine the means and variances of the velocity and acceleration in stochastically-defined planar pin jointed kinematic chains are presented. The presented model considers the effect of tolerances on link length and radial clearance and uncertainty of pin location as a net effect on the link's effective length. The determination of the mean values and variances of the output variables requires the calculation of sensitivities of secondary variables with respect to the random variables. It is shown that this computation is straightforward and can be accomplished by a conventional kinematic analysis package with minor modification. Thus, the concepts of tolerance and clearance have been captured by the model and analysis. The only input data are the nominal linkage model and statistical information. The "effective link length" model is shown to be applicable to both analytical solution and Monte Carlo simulation. The results from both methods are compared. This paper Ksolves the higher-order kinematic problems for the probabilistic design analysis of stochastically-defined mechanisms.echanisms.

SRAM소자의 Cell Latch-up 효과에 대한 해석 연구 (A Study of Cell Latch-up Effect Analysis in SRAM Device)

  • 이흥주;이준하
    • 한국산학기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.54-57
    • /
    • 2005
  • 반도체 소자 면적의 축소에 따라 중성자의 소프트 에러율은 집적회로 설계시 큰 문제점으로 대두되고 있다. 고전류 중성자 빔에 의한 가속 실험에서, 래치-업 현상은 소프트 에러 발생율의 정확한 예측을 방해하는 요소로 작용하고 있다. 본 연구는 SRAM 소자의 SER 가속 실험시 발생하는 래치-업에 대한 효과를 분석하였다. 2차원 소자 시뮬레이터를 이용한 시뮬레이션 환경하에서의 결과 깊은 p-well 구조의 기판이 이중 또는 삼중 well 구조에 비하여 양호한 래치-업 방지 효과를 나타내었다. 또한 접지에 대한 $V_{DD}$ 전력선까지의 거리를 최소화하는 것이 효과적인 설계 기법으로 평가되었다.

  • PDF

Dynamic response characteristics of crossing tunnels under heavy-haul train loads

  • Dong, Jie;Zhong, Shuai;Wang, Hai-long;Wu, Zhi-hui
    • Geomechanics and Engineering
    • /
    • 제20권2호
    • /
    • pp.103-112
    • /
    • 2020
  • The dynamic response of crossing tunnels under heavy-haul train loads is still not fully understood. In this study, based on the case of a high-speed tunnel underneath an existing heavy-haul railway tunnel, a model experiment was performed to research the dynamic response characteristics of crossing tunnels. It is found that the under-crossing changes the dynamic response of the existing tunnel and surrounding rock. The acceleration response of the existing tunnel enhances, and the dynamic stress of rock mass between crossing tunnels decreases after the excavation. Both tunneling and the excitation of heavy-haul train loads stretch the tunnel base, and the maximum tensile strain is 18.35 µε in this model test. Then, the measured results were validated by numerical simulation. Also, a parametric study was performed to discuss the influence of the relative position between crossing tunnels and the advanced support on the dynamic behavior of the existing tunnel, where an amplifying coefficient of tunnel vibration was introduced to describe the change in acceleration due to tunneling. These results reveal the dynamic amplifying phenomenon of the existing tunnel during the new tunnel construction, which can be referred in the dynamic design of crossing tunnels.