• Title/Summary/Keyword: Simulation Test

Search Result 6,905, Processing Time 0.033 seconds

Effects of Complex Oxides on HAZ Toughness of Three API X80 Linepipe Steels (API X80 라인파이프강의 용접열영향부 충격인성에 미치는 복합산화물의 영향)

  • Shin, Sang Yong;Oh, Kyoungsik;Kang, Ki Bong;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2008
  • This study is concerned with effects of complex oxides on Charpy impact toughness of heat affected zone (HAZ) of API X80 linepipe steels. Three kinds of steels were fabricated by varying alloying elements such as Ti, Al, and Mg and hot-rolling conditions to form complex oxides, and their microstructures and Charpy impact properties were investigated. The number of complex oxides present in the steel containing excess Ti, Al, and Mg was twice larger than that in the conventional steels, while their size ranged from 1 to $3{\mu}m$ in the three steels. After the HAZ simulation test, the steel containing a number of oxides contained about 20 vol.% of acicular ferrite in the simulated HAZ, together with bainitic ferrite and martensite, whereas the HAZ microstructure of the conventional steels consisted of bainitic ferrite and martensite with a small amount of acicular ferrite. This formation of acicular ferrite in the oxide-containing steel was associated with the nucleation of acicular ferrite at complex oxides, thereby leading to the great (five times or more) improvement of Charpy impact toughness over the conventional steels.

Effects of Carbon, Tungsten, and Vanadium on the Microstructure, High-Temperature Wear Properties, and Surface Roughness of High Speed Steel Rolls (고속도강롤의 미세조직, 고온마모특성, 표면조도에 미치는 탄소, 텅스텐, 바나듐의 영향)

  • Ha, Dae Jin;Sung, Hyo Kyung;Park, Joon Wook;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.406-415
    • /
    • 2009
  • A study was conducted on the effects of carbon, tungsten, and vanadium on the wear properties and surface roughness of four High Speed Steel (HSS) rolls manufactured by the centrifugal casting method. Hot-rolling simulation tests were carried out using a high-temperature wear tester capable of controlling speed, load, and temperature. HSS rolls contained a large amount (up to 25 vol.%) of carbides such as MC, $M_{2}C$, $M_{7}C_{3}$, and $M_{6}C$ carbides formed in the tempered martensite matrix. The matrix consisted mainly of lath tempered martensite when the carbon content in the matrix was small, and contained a considerable amount of plate tempered martensite when the carbon content increased. The high-temperature wear test results indicated that the wear properties and surface roughness of the rolls improved when the amount of hard MC carbides formed inside solidification cells increased. The rolls distribution was also homogeneous. The best wear properties and surface roughness were obtained from a roll where a large amount of MC carbides was homogeneously distributed in the lath tempered martensite matrix. The proper contents of carbon equivalent, tungsten equivalent, and vanadium were 2.0~2.3%, 9~10%, and 5~6%, respectively.

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

CFD Study for the Design of Coolant Path in Cryogenic Etch Chuck

  • Jo, Soo Hyun;Han, Ji Hee;Kim, Jong Oh;Han, Hwi;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.92-97
    • /
    • 2021
  • The importance of processes in cryogenic environments is increasing in a way to address problems such as critical dimension (CD) narrow and bottlenecks in micro-processing. Accordingly, in this paper, we proceed with the design and analysis of Electrostatic Chuck(ESC) and Coolant in cryogenic environments, and present optimal model conditions to provide the temperature distribution analysis of ESC in these environments and the appropriate optimal design. The wafer temperature uniformity was selected as the reference model that the operating conditions of the refrigerant of the liquid nitrogen in the doubled aluminum path were excellent. Design of simulation (DOS) was carried out based on the wheel settings within the selected reference model and the classification of three mass flow and diameter case, respectively. The comparison between factors with p-value less than 0.05 indicates that the optimal design point is when five turns of coolant have a flow rate of 0.3 kg/s and a diameter of 12 mm. ANOVA determines the interactions between the above factor, indicating that mass flow is the most significant among the parameters of interests. In variable selection procedure, Case 2 was also determined to be superior through the two-Sample T-Test of the mean and variance values by dividing five coolant wheels into two (Case 1 : 2+3, Case 2: 3+2). Finally, heat transfer analysis processes such as final difference method (FDM) and heat transfer were also performed to demonstrate the feasibility and adequacy of the analysis process.

Performance Evaluation of App Profile-based Sensor Registry System considering User Mobility and Sensor Density (사용자 이동성과 센서 밀집도를 고려한 앱 프로파일 기반 센서 레지스트리 시스템의 성능 평가)

  • Kim, Jong Hyun;Lee, Sukhoon;Jeong, Dongwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.4
    • /
    • pp.87-97
    • /
    • 2019
  • SRS was proposed for immediate processing of the meaning of sensor data on mobile devices independent from specific sensor networks and sensor type. However, each time new sensor data is received, sensor data inspection operations are performed repeatedly, and it cause resulting in low performance. App profile-based SRS has been proposed to resolve the problem. The app profile-based SRS has improved the SRS problem through the profile, but has been tested in a virtual simulation environment. After that the test was experimented in a real-time environment, but has not been tested with a variety of dynamic factors. Therefore, this paper experiment considering such as user mobility and sensor density in real-time environment. And this paper also evaluate performance of the App profile-based through analysis of the results of the experiment. As a result, app profile-based SRS is high influence by density and sensor type, and the number of sensor node is not influence.

Evaluation of Horizontal Load and Moment Capacities of Bucket-Type Offshore Wind Turbine Foundation (버켓형식 해상풍력기초의 수평 하중과 모멘트 저항력 평가)

  • Bagheri, Pouyan;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.1
    • /
    • pp.5-12
    • /
    • 2021
  • Owing to economically efficient and easy installation, bucket foundation is a promising solution for offshore wind turbines. This paper aims at finding the behavior of suction caissons and soil surrounding the foundation by using three-dimensional finite element analysis. Under various loading conditions, a wide range of foundation geometries installed in dense and medium dense sandy soil was considered to evaluate ultimate horizontal load and overturning moment capacity. The results show that the rotation and displacement of the bucket due to monotonic loading are largely dependent on the foundation geometry, soil density and load eccentricity. Normalized diagrams and equations for the ultimate horizontal load and overturning moment capacities are presented that are useful tool for the preliminary design of such foundation type.

A Study on the Collaborative Inventory Management of Big Data Supply Chain : Case of China's Beer Industry

  • Chen, Jinhui;Jin, Chan-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.77-88
    • /
    • 2021
  • The development history of China's big data is relatively short, and it has only been ten years so far. Although the application level of big data in real life is not high, some achievements have been made in the supply chain. Various kinds of data will be generated in the actual operation of the supply chain. If these data can be effectively classified and used, the "bullwhip effect" of the operation of the supply chain can be also effectively improved. Thus this paper proposes the development of a supply chain collaborative inventory management model and application framework using big data. In this study, we analyzed the supply chain of beer industry, which is the most prominent consumption industry with "bullwhip effect", and further established a big data collaborative inventory management model for the supply chain of beer industry based on system dynamics. We used the Vensim software for simulation and sensitivity test and after appling our model, we found that the inventory fluctuations of the participants in the beer industry supply chain became significantly smaller, which verified the effectiveness of the model. Our study can be also applied to the possible problems of the large data supply chain collaborative inventory management model, and gives certain countermeasures and suggestions.

Discrimination between trend and difference stationary processes based on adaptive lasso (Adaptive lasso를 이용하여 추세-정상시계열과 차분-정상시계열을 판별하는 방법에 대한 연구)

  • Na, Okyoung
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.723-738
    • /
    • 2020
  • In this paper, we study a method to discriminate between trend stationary and difference stationary processes. Since a crucial ingredient of this discrimination is to determine the existence of unit root, we can use a unit root testing strategy. So, we introduce a discrimination based on unit root testing and propose the method using the adaptive lasso. Our Monte Carlo simulation experiments show that the adaptive lasso improves the discrimination accuracy when the process is trend stationary, but has lower accuracy than unit root strategy where the process is difference stationary.

Multi-condition optimization and experimental verification of impeller for a marine centrifugal pump

  • Wang, Kai;Luo, Guangzhao;Li, Yu;Xia, Ruichao;Liu, Houlin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.71-84
    • /
    • 2020
  • In order to improve the performance of marine centrifugal pump, a centrifugal pump whose specific speed is 66.7 was selected for the research. Outlet diameter D2, outlet width b2, blade outlet angle β2, blade wrap φ and blade number z of the impeller were chosen as the variables. The maximum weighted average efficiency and the minimum vibration intensity at the base were calculated as objectives. Based on the Latin Hypercube method, the impeller was numerically optimized. The numerical results show that after optimization, the amplitudes of pressure fluctuation on the main frequency at different monitoring points decrease in varying degrees. The radial force on impeller decreases obviously under off-design flow rates and is more symmetrical during the operation of the pump. The variation of the axial force is relatively small, which has no obvious relationship with the rotating angle of the impeller. The energy performance and vibration experiment was performed for verifying. The test results show that the weighted average efficiency under 0.8Qd, 1.0Qd and 1.2Qd increases by 4.3% after optimization. The maximal vibration intensity at M1-M4 on the pump base reduced from 0.36 mm/s to 0.25 mm/s, decreasing by 30.5%. In addition, the vibration velocities of bracket in pump side and outlet flange also have significant reductions.

Safety Factor Analysis of Range-Shift on Multi-Purpose Agricultural Implement Machinery (다목적 농작업 기계 변속기 부변속 안전율 분석)

  • Moon, Seok Pyo;Baek, Seung Min;Lee, Nam Gyu;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.141-151
    • /
    • 2020
  • The aim of this study was to analyze the safety factor of range-shift gear pairs on multi-purpose agricultural implement machinery for an optimal design of a transmission system. Gear-strengths such as bending and contact stress and safety factors were analyzed under three load conditions: an equivalent engine torque at plow tillage, a rated engine torque, and the maximum engine torque. Root and contact safety factor were calculated to be 3.88, 5.14, 2.24, 2.11, 2.21, 0.99 and 0.78, 0.94, 0.65, 0.68, 0.84, 0.85, respectively, under equivalent engine torque condition at the plow tillage. The root and contact safety factor were calculated to be 1.91, 2.53, 1.10, 1.04, 1.07, 0.48 and 0.55, 0.66, 0.46, 0.48, 0.59, 0.59, respectively, under rated engine torque condition. The root and contact safety factor were calculated to be 1.60, 2.11, 0.92, 0.87, 0.90, 0.40 and 0.51, 0.61, 0.42, 0.44, 0.54, 0.54, respectively, under the maximum engine torque condition. The multi-purpose agricultural implement machinery could be conducted under plow tillage operation. However, gear specifications for tooth surface need modification because the gear surface would be broken at all driving conditions as safety factors are lower than 1.