• 제목/요약/키워드: Simulation Efficiency

검색결과 6,247건 처리시간 0.034초

마르코프 결정 과정에서 시뮬레이션 기반 정책 개선의 효율성 향상을 위한 시뮬레이션 샘플 누적 방법 연구 (A Simulation Sample Accumulation Method for Efficient Simulation-based Policy Improvement in Markov Decision Process)

  • 황시랑;최선한
    • 한국멀티미디어학회논문지
    • /
    • 제23권7호
    • /
    • pp.830-839
    • /
    • 2020
  • As a popular mathematical framework for modeling decision making, Markov decision process (MDP) has been widely used to solve problem in many engineering fields. MDP consists of a set of discrete states, a finite set of actions, and rewards received after reaching a new state by taking action from the previous state. The objective of MDP is to find an optimal policy, that is, to find the best action to be taken in each state to maximize the expected discounted reward of policy (EDR). In practice, MDP is typically unknown, so simulation-based policy improvement (SBPI), which improves a given base policy sequentially by selecting the best action in each state depending on rewards observed via simulation, can be a practical way to find the optimal policy. However, the efficiency of SBPI is still a concern since many simulation samples are required to precisely estimate EDR for each action in each state. In this paper, we propose a method to select the best action accurately in each state using a small number of simulation samples, thereby improving the efficiency of SBPI. The proposed method accumulates the simulation samples observed in the previous states, so it is possible to precisely estimate EDR even with a small number of samples in the current state. The results of comparative experiments on the existing method demonstrate that the proposed method can improve the efficiency of SBPI.

직류전기철도에서 운행시격에 따른 에너지저장장치의 효율에 관한 연구 (A Study on the Efficiency of Energy Storage System Applied to the Power Traction System of DC Electric Railway)

  • 김성대;최규형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.754-760
    • /
    • 2011
  • In the DC traction system, a large load current of electric railcar leads to a voltage drop when a vehicle starts, and the regenerative power generated by brake system increases the catenary voltage. To minimize the voltage fluctuation during the train operation and make use of the regenerative power, several types of energy storage systems are being studied. The energy storage system that is being recently introduced consists of the supercapacitors for energy storage and the bi-direction DC/DC converter for charge/discharge control. The efficiency of the energy storage system depends on the train operation pattern. In this paper, the operation efficiency of the energy storage system was quantitatively analyzed via simulation study taking consideration of the train operation patterns. The simulation was conducted changing the headway of trains with the energy storage system that uses the bi-direction DC/DC converter and supercapacitor. The simulation results showed that the operation efficiency of the energy storage system increases as the headway increase.

  • PDF

팔레트 적재효율을 고려한 농산물 포장상자 통합규격에 관한 연구 (A Study on Unified Packing Standard for Agricultural Products Based on Pallet Stacking Efficiency)

  • 서교;이정재;서병륜
    • 한국농공학회논문집
    • /
    • 제47권1호
    • /
    • pp.13-22
    • /
    • 2005
  • Despite the variety in sizes and shapes of agricultural products, the unified standardization of packing has been a long time necessity. In this study the stacking efficiency of packing standards for each box using packing Monte Carlo simulation based on the standard pallet is evaluated. As a result of simulation the unified packing standard for agricultural products is suggested by 550$\times$366 mm. With this study it is expected that the unification of the standards can help to increase the utilization of reusable packages and to improve efficiency of agricultural logistics.

DCBA-DEA: A Monte Carlo Simulation Optimization Approach for Predicting an Accurate Technical Efficiency in Stochastic Environment

  • Qiang, Deng;Peng, Wong Wai
    • Industrial Engineering and Management Systems
    • /
    • 제13권2호
    • /
    • pp.210-220
    • /
    • 2014
  • This article describes a 2-in-1 methodology utilizing simulation optimization technique and Data Envelopment Analysis in measuring an accurate efficiency score. Given the high level of stochastic data in real environment, a novel methodology known as Data Collection Budget Allocation-Data Envelopment Analysis (DCBA-DEA) is developed. An example of the method application is shown in banking institutions. In addition to the novel approach presented, this article provides a new insight to the application domain of efficiency measurement as well as the way one conducts efficiency study.

CFD해석에 의한 침실 호흡역의 환기효율 분석 (Analysis on ventilation efficiency by CFD simulation for breathing zone in bed room)

  • 유복희;윤정숙
    • KIEAE Journal
    • /
    • 제2권3호
    • /
    • pp.11-16
    • /
    • 2002
  • Indoor air environment is one of the most important factors that affect resident's health and comfort level. In this paper, the influence of ventilation efficiency with different types of furniture arrangement at breathing zone in a room was analyzed by numerical simulation based on computational fluid dynamics(CFD). The furniture layout of students' bedroom have been classified by three different patterns so that SVE3(scale for ventilation efficiency3) in the rooms was analyzed for air flow distribution. According to the results of the study, SVE3 has the maximum value in spaces between furnitures and each comer of the room. The furniture arrangement influences the ventilation efficiency. It was con finned that ventilation effective in a room is not uniformly distributed as compared the breathing zone with all the area in a room. It means that a study of ventilation efficiency was considered relatively with target zone(a residential or breathing zone) and all the area in a space.

에너지 효율분석을 통한 DC 마이크로그리드의 타당성 검토 (A Feasibility Study on DC Microgrids Considering Energy Efficiency)

  • 유철희;정일엽;홍성수;채우규;김주용
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1674-1683
    • /
    • 2011
  • More than 80% of electric loads need DC electricity rather than AC at the moment. If DC power could be supplied directly to the terminal loads, power conversion stages including rectifiers, converters, and power adapters can be reduced or simplified. Therefore, DC microgrids may be able to improve energy efficiency of power distribution systems. In addition, DC microgrids can increase the penetration level of renewable energy resources because many renewable energy resources such as solar photovoltaic(PV) generators, fuel cells, and batteries generate electric power in the form of DC power. The integration of the DC generators to AC electric power systems requires the power conversion circuits that may cause additional energy loss. This paper discusses the capability and feasibility of DC microgrids with regard to energy efficiency analysis through detailed dynamic simulation of DC and AC microgrids. The dynamic simulation models of DC and AC microgrids based on the Microgrid Test System in KEPCO Research Institute are described in detail. Through simulation studies on various conditions, this paper compares the energy efficiency and advantages of DC and AC microgrids.

PHEV 시스템의 분석을 통한 신 PHEV 동력 시스템 제안 (Proposal of a Novel Plug-in-hybrid Power System Based on Analysis of PHEV System)

  • 김진성;박영일
    • 한국자동차공학회논문집
    • /
    • 제23권4호
    • /
    • pp.436-443
    • /
    • 2015
  • In order to develop the PHEV(plug-in hybrid electric vehicle), the specific power transmission systems considering the PHEV system characteristics should be applied. A PHEV applied to series-parallel type hybrid power transmission system is a typical example. In this paper, the novel hybrid power systems are proposed by analyzing the existing PHEV system. The backward simulation program is developed to analyze the fuel efficiency of hybrid power system. Quasi-static models for each components such as engine, motor, battery and vehicle are included in the developed simulation program. To obtain an optimal condition for hybrid systems, an optimization approach called the dynamic programming is applied. The simulation is performed in various driving cycles. A weakness for the existing system is found through the simulation. To compensate for a discovered weakness, novel hybrid power systems are proposed by adding or moving the clutch to the existing system. Comparing the simulation results for each systems, the improved fuel efficiency for proposed systems are verified.

교류 전압 제어기에 의한 유도전동기의 효율 개선에 관한 연구 (A Study on the Efficiency Improvement of Induction Motor with AC Voltage Controller)

  • 이승철;정승기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.137-139
    • /
    • 1991
  • This paper proposes a minimum power factor control for maximum efficiency operation of an induction motor, under low load condition. Minimum input or maximum efficiency operation is achived by properly adjusting the amplitude of the stator voltage, with the three phase AC voltage controller. Through the simulation, the relationships between the delay angle and input power under various load conditions are examined. Experimental results are also given, which show good coincidence with the simulation results.

  • PDF

사판의 경사각도 변화에 따른 사판식 압축기의 성능해석 (Performance Analysis of Swash Plate Type Compressor on the Inclined Angle of Swash Plate)

  • 이건호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.215-220
    • /
    • 2002
  • This paper describes a simulation model for estimation the performance of the swash plate type compressor for automotive air conditioning system. The model includes consideration of both the compression process and the dynamic behavior. Also, this study compares the results obtained from the performance simulation with experimental results. Further, the effects of the inclined angle of swash plate on the performance of swash plate type compressor are discussed.

  • PDF

300MW급 IGCC를 위한 건식 분류층 석탄 가스화 공정의 동적 상태 모사 (The Process Simulation of Entrained Flow Coal Gasification in Dynamic State for 300MW IGCC)

  • 김미영;주용진;최인규;이중원
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.460-469
    • /
    • 2010
  • To develop coal gasfication system, many studies have been actively conducted to describe the simulation of steady state. Now, it is necessary to study the gasification system not only in steady state but also in dynamic state to elucidate abnormal condition such as start-up, shut-down, disturbance, and develop control logic. In this study, a model was proposed with process simulation in dynamic state being conducted using a chemical process simulation tool, where a heat and mass transfer model in the gasifier is incorporated, The proposed model was verified by comparison of the results of the simulation with those available from NETL (National Energy Technology Laboratory) report under steady state condition. The simulation results were that the coal gas efficiency was 80.7%, gas thermal efficiency was 95.4%, which indicated the error was under 1 %. Also, the compositions of syngas were similar to those of the NETL report. Controlled variables of the proposed model was verified by increasing oxygen flow rate to gasifier in order to validate the dynamic state of the system. As a result, trends of major process variables were resonable when oxygen flow rate increased by 5% from the steady state value. Coal flow rate to gasifier and quench gas flow rate were increased, and flow rate of liquid slag was also increased. The proposed model in this study is able to be used for the prediction of gasification of various coals and dynamic analysis of coal gasification.