• 제목/요약/키워드: Simulation Efficiency

검색결과 6,247건 처리시간 0.031초

유인수로의 운영에 따른 달성보 인공하도식 어도의 유인효율 평가 (Assessment of Attraction Efficiency of By-pass Fishway at Dalseong Weir According to Operating Attraction Waterway)

  • 박지현;구영훈;백경오;김영도
    • 한국물환경학회지
    • /
    • 제31권1호
    • /
    • pp.1-11
    • /
    • 2015
  • In this study, the attraction efficiency of the by-pass fishway installed at Dalseong Weir in Nakdong River was assessed according to operation of the attraction waterway by using River2D which is a two-dimensional physical habitat simulation model. The model was calibrated and validated through the measured water elevation. The attraction efficiency of the fishway was evaluated at the low flow condition because the target fish, Zacco platypus (Z. platypus), have moved frequently up and downstream at the spawning season from April to June. From simulation results, it can be deduced that the attraction efficiency at situation of open attraction waterway is superior to that of close attraction waterway. Also it is shown that velocity field at inner region of the fishway is suitable for migration of the fish.

비포화대 오염정화 설계를 위한 공압파쇄 모사 해석 (A Numerical Analysis on Pneumatic Fracturing for in-situ Remediation)

  • 권미선;박은규;이철효;김용성;김남진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권6호
    • /
    • pp.53-63
    • /
    • 2010
  • Pneumatic fracturing is an emerging tool to enhance the remediation efficiency of contaminated unsaturated zones by injecting high pressure air and inducing artificial fracture networks. Pneumatic fracturing is reported to be well suited for the cases where the contaminated unsaturated zone thickness is less than 5 m as many contaminated domestic sites in Korea. Nevertheless, there have been almost no studies carried out on the site-specific efficiency and the optimized design of pneumatic fracturing considering the unsaturated zone characteristics of Korea. In this study, we employ numerical simulations to compare the efficiency of pneumatic fracturing on the aspect of the site remediation and the porosity improvement at several hypothetic unsaturated zones composed of four typical soil types. According to the simulation results, it is found that the zone with fine grains soil such as clay and silt shows better efficiency than the zone composed of coarse grains in terms of air flow and porosity enhancements. The results imply that pneumatic fracturing may improve the efficiency of site reclamation by jointly or independently applied to the many contaminated sites in Korea.

Analysis of Key Parameters for Inductively Coupled Power Transfer Systems Realized by Detuning Factor in Synchronous Generators

  • Liu, Jinfeng;Li, Kun;Jin, Ningzhi;Iu, Herbert Ho-Ching
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1087-1098
    • /
    • 2019
  • In this paper, a detuning factor (DeFac) method is proposed to design the key parameters for optimizing the transfer power and efficiency of an Inductively Coupled Power Transfer (ICPT) system with primary-secondary side compensation. Depending on the robustness of the system, the DeFac method can guarantee the stability of the transfer power and efficiency of an ICPT system within a certain range of resistive-capacitive or resistive-inductive loads. A MATLAB-Simulink model of a ICPT system was built to assess the system's main evaluation criteria, namely its maximum power ratio (PR) and efficiency, in terms of different approaches. In addition, a magnetic field simulation model was built using Ansoft to specify the leakage flux and current density. Simulation results show that both the maximum PR and efficiency of the ICPT system can reach almost 70% despite the severe detuning imposed by the DeFac method. The system also exhibited low levels of leakage flux and a high current density. Experimental results confirmed the validity and feasibility of an ICPT system using DeFac-designed parameters.

단일 실행 시뮬레이션 최적화를 위한 Reverse-Simulation 기법 (Reverse-Simulation Method for Single Run Simulation Optimization)

  • 이영해
    • 한국시뮬레이션학회논문지
    • /
    • 제5권2호
    • /
    • pp.85-93
    • /
    • 1996
  • Simulation is commonly used to find the best values of decision variables for problems which defy analytical solutions. This objective is similar to that of optimization problems and thus, mathematical programming techniques may be applied to simulation. However, the application of mathematical programming techniques, e.g., the gradient methods, to simulation is compounded by the random nature of simulation responses and by the complexity of the statistical issues involved. In this paper, therefore, we explain the Reverse-Simulation method to optimize a simulation model in a single simulation run. First, we point the problem of the previous Reverse-Simulation method. Secondly, we propose the new algorithm to solve the previous method and show the efficiency of the proposed algorithm.

  • PDF

전산유체역학을 이용한 항공기 프로펠러 공력특성 연구 (Application of CFD in The Analysis of Aerodynamic Characteristics for Aircraft Propellers)

  • 조규철;김효진;박일주;장성복
    • 한국항공우주학회지
    • /
    • 제40권11호
    • /
    • pp.917-926
    • /
    • 2012
  • 본 연구는 고효율 복합재 프로펠러를 개발하기 위하여, 항공기 프로펠러 효율 특성 해석을 수행하였다. 비선형 수치해석을 이용하여 프로펠러의 공력 특성을 분석하고, 풍동 실험결과와 비교 분석하였다. 유동해석코드는 비선형 유동방정식인 RANS(Reynolds Averaged Navier-Stocks)를 수치해석화한 코드를 사용하였다. 해석 결과, 수치해석을 통하여 얻어진 프로펠러의 추력 및 출력계수는 실험결과와 비교하여 다소 높게 분석되었으며, 추력과 출력의 비로부터 계산된 프로펠러 효율은 실험결과와 잘 부합하는 것으로 확인하였다.

함정 추진디젤기관의 고효율 해수냉각시스템에 관한 연구 (A Study of the High Efficiency Sea Water Cooling System for the Propulsion Diesel Engine of Warships)

  • 강병수;임용수;조관준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.468-472
    • /
    • 2015
  • 최근 대두되는 선박배기가스 저감 등의 환경정책으로 인하여 에너지의 효율적 이용에 관심이 증가하고 있다. 본 논문에서는 함정의 에너지 효율 향상을 위하여 사용 부하에 따라 해수펌프를 제어하는 고효율 해수냉각시스템을 제안한다. 본 논문에서는 제안하는 시스템의 효과를 알아보기 위하여 추진 디젤기관의 냉각시스템을 모델링 하고 함정 운항특성을 고려한 시뮬레이션을 수행하였다. 시뮬레이션 결과 제안한 고효율 해수냉각시스템이 기존 해수냉각시스템에 비하여 약 53%의 에너지 절감효과가 있었다. 본 연구 결과는 향후 함정 추진 디젤기관의 해수냉각시스템의 성능 향상에 유용한 자료로 활용될 수 있다.

광통신용 박막필터형 광소자 분석을 위한 최적화 모델링과 특성분석 (The characteristics and optimal modeling of input source for optical device using thin film filter in optical telecommunication network)

  • 김명진;이승걸
    • 한국광학회지
    • /
    • 제14권3호
    • /
    • pp.306-311
    • /
    • 2003
  • 본 논문에서는 광전송시스템에서 파장분할다중화 광소자로 사용되는 박막필터형 광소자의 특성 분석 및 평가를 위해 입력광원을 모델링 하였으며 광경로에 대해 광선추적법을 사용하여 전산모의 한 광특성을 실험과 비교, 분석하였다. 그 결과 입력광원에 대한 cell 방식의 모델링이 결합효율의 정확도 및 가우시안 강도분포에 접근성을 볼 때 마이크로 옵틱스형 광소자 분석함에 있어 적합함을 알 수 있다. 박막필터형 광소자에 대한 최적 전산모의 결과 광섬유와 GRIN 렌즈 사이 거리가 0.24mm이며 GRIN 렌즈와 박막필터 사이 거리가 0.25mm일 때 최대 결합효율은 -0.11 ㏈이었으며 동일한 조건에의 실험결과 -0.35 ㏈의 최대 결합효율을 얻었다. 이것은 단심 및 이심페룰, GRIN 렌즈 등과 같은 구성품의 불완전성과 박막필터에 의한 손실을 고려할 때, 전산모의 결과와 매우 일치하는 것으로서 본 연구에서 제안한 입력광원의 모델링을 적용한 전산모의가 박막필터형 광소자의 특성을 예측할 수 있음을 보였다.

Realistic simulation of reinforced concrete structural systems with combine of simplified and rigorous component model

  • Chen, Hung-Ming;Iranata, Data
    • Structural Engineering and Mechanics
    • /
    • 제30권5호
    • /
    • pp.619-645
    • /
    • 2008
  • This study presents the efficiency of simulating structural systems using a method that combines a simplified component model (SCM) and rigorous component model (RCM). To achieve a realistic simulation of structural systems, a numerical model must be adequately capturing the detailed behaviors of real systems at various scales. However, capturing all details represented within an entire structural system by very fine meshes is practically impossible due to technological limitations on computational engineering. Therefore, this research develops an approach to simulate large-scale structural systems that combines a simplified global model with multiple detailed component models adjusted to various scales. Each correlated multi-scale simulation model is linked to others using a multi-level hierarchical modeling simulation method. Simulations are performed using nonlinear finite element analysis. The proposed method is applied in an analysis of a simple reinforced concrete structure and the Reuipu Elementary School (an existing structure), with analysis results then compared to actual onsite observations. The proposed method obtained results very close to onsite observations, indicating the efficiency of the proposed model in simulating structural system behavior.

A Practical Exciter Model Reduction Approach For Power System Transient Stability Simulation

  • Kim, Soobae
    • 조명전기설비학회논문지
    • /
    • 제29권10호
    • /
    • pp.89-96
    • /
    • 2015
  • Explicit numerical integration methods for power system transient stability simulation require very small time steps to avoid numerical instability. The EXST1 exciter model is a primary source of fast dynamics in power system transients. In case of the EXST1, the required small integration time step for entire system simulation increases the computational demands in terms of running time and storage. This paper presents a practical exciter model reduction approach which allows the increase of the required step size and thus the method can decrease the computational demands. The fast dynamics in the original EXST1 are eliminated in the reduced exciter model. The use of a larger time step improves the computational efficiency. This paper describes the way to eliminate the fast dynamics from the original exciter model based on linear system theory. In order to validate the performance of the proposed method, case studies with the GSO-37 bus system are provided. Comparisons between the original and reduced models are made in simulation accuracy and critical clearing time.

Flutter and Buffeting Control of Long-span Suspension Bridge by Passive Flaps: Experiment and Numerical Simulation

  • Phan, Duc-Huynh;Nguyen, Ngoc-Trung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.46-57
    • /
    • 2013
  • Flutter stability and buffeting response have been the topics of most concern in the design state of long-span suspension bridges. Among approaches towards the aerodynamic stability, the aerodynamic-based control method which uses control surfaces to generate forces counteracting the unstable excitations has shown to be promising. This study focused on the mechanically controlled system using flaps; two flaps were attached on both sides of a bridge deck and were driven by the motions of the bridge deck. When the flaps moved, the overall cross section of the bridge deck containing these flaps was continuously changing. As a consequence, the aerodynamic forces also changed. The efficiency of the control was studied through the numerical simulation and experimental investigations. The values of quasi-steady forces, together with the experimental aerodynamic force coefficients, were proposed in the simulation. The results showed that the passive flap control can, with appropriate motion of the flaps, solve the aerodynamic instability. The efficiency of the flap control on the full span of a simple suspension bridge was also carried out. The mode-by-mode technique was applied for the investigation. The results revealed that the efficiency of the flap control relates to the mode number, the installed location of the flap, and the flap length.