• Title/Summary/Keyword: Simulation Acceleration

Search Result 945, Processing Time 0.029 seconds

Dynamic Response of a 2.75MW Wind Turbine Applying Torque Control Method Based on Torque-Mode (토크모드 기반의 토크 제어 방법을 적용한 2.75MW 풍력터빈의 동적 응답)

  • Lim, Chae-Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.5-11
    • /
    • 2013
  • Torque control methods of wind turbine are mainly classified into two methods: torque-mode and speed-mode methods. The traditional torque-mode method, in which generator torque proportional to square of generator speed is determined, has been chosen in many wind turbines but its response is slower as they are larger in multi-MW size. Torque control methods based on both speed-mode and torque-mode can be used to make response of wind turbine faster. In this paper, two torque control methods based on the traditional torque-mode method are applied to a 2.75 MW wind turbine. It is shown through some simulation results for real turbulence wind speeds that torque control method based on torque-mode has the merit of reducing fluctuations of generated power than PI controller based on speed-mode.

Design and Performance Study of Propulsion System for Korean High Speed Train (한국형 고속전철의 추진시스템 설계 및 성능 연구)

  • 박광복;김현철
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.349-358
    • /
    • 1998
  • This study was carried out about the design and the performance study of propulsion system for Korean High Speed Train of maximum operating speed of 350km/h. The propulsion system was studied to two parts the formation of power transmission and the performance of traction system base on Korean-TGV. For maximum operating speed of 350km/h at Seoul-Pusan high speed line, the power of train should be have the remaining acceleration of 0.058m/s/s and the slopeability of 6%o. This performance study of propulsion system would be continued for defining of adhesion factor, friction factor and aerodynamic factor assumed to analysis and simulation.

  • PDF

A Genetic Approach to Transmission Rate and Power Control for Cellular Mobile Network (ICEIC'04)

  • Lee YoungDae;Park SangBong
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.10-14
    • /
    • 2004
  • When providing flexible data transmission for future CDMA(Code Division Multiple Access) cellular networks, problems arise in two aspects: transmission rate. This paper has proposed an approach to maximize the cellular network capacity by combining the genetic transmission rate allocation and a rapid power control algorithm. We present a genetic chromosome representation to express call drop numbers and transmission rate to control mobile's transmission power levels while handling their flexible transmission rates. We suggest a rapid power control algorithm, which is based on optimal control theory and Steffenson acceleration technique comparing with the existing algorithms. Computer simulation results showed effectiveness and efficiency of the proposed algorithm Conclusively, our proposed scheme showed high potential for increasing the cellular network capacity and it can be the fundamental basis of future research.

  • PDF

A Study on the Core Equivalent Stiffness Modeling Technique for FSI Analysis of High-Rise Buildings Under Wind Load (풍하중을 받는 초고층건물의 FSI 해석을 위한 코어 삽입 등가 강성 모델링 기법에 관한 연구)

  • Oh, Kang-Hwan;Jeon, Doo-jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.65-73
    • /
    • 2017
  • Recently, the trend is emerging a variety of irregular tall buildings. It is important to design the building for lateral load according to this trend. Fluid Structure Interaction(FSI) simulation can be performed to understand the vibrations of the structure against dynamic wind loads. In order to make the physical characteristics of the actual structure and the analytical model the same, we studied core inserting equivalent stiffness modeling method. As a result of this analysis, the stiffness of the structure can be set similar to that of the two axes of the structure, and turbulence can be reproduced through the acceleration tendency.

In Position control system, the Design of PIDA Controller using Neural Network algorithm with Acceleration control function (위치제어계에서 신경망 알고리즘을 이용하여 가속도 제어기능을 갖는 PIDA 제어기 설계)

  • 최의혁;박광현;하홍곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.310-313
    • /
    • 2002
  • In industrial actual control system, PID controller has been used with its high delicate control system in position control system. PID controller has simple structure and superior ability in several characteristics. When the response of system is changed by delay time, variable load , disturbances and external environment, control gain of PID controller must be readjusted on the system dynamic characteristics. Therefore, a control ability of PID controller is degraded when the control gain is inappropriately determined. When the response characteristic of system is changed under a condition, control gain of PID controller must be changed adaptively to be a waited response of system. In this paper an PIDA controller is constructed by Two-Layers Neural Network applying back-propagation(BP) algorithm. Form the result of compute. simulation in the proposed controller, its usefulness is verified.

  • PDF

A Vertical Line Following Guidance Law Design (수직면 직선추종유도법칙 설계)

  • Whang, Ick-Ho;Cho, Sung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1309-1313
    • /
    • 2010
  • In this paper, we propose a novel guidance law for controlling an UAV(Unmanned Air-Vehicle) to follow a reference line in vertical plane. A kinematics model representing the relative motion of the UAV to the reference line is derived. And then LQR(Linear Quadratic Regulator) theory is applied to the model to derive the VLFG(Vertical Line Following Guidance) law. The resultant guidance law forms a gain-scheduling controller scheduled by a simple parameter $\sigma$ which is a function of the UAV's velocity, axial acceleration, gravity, and the slope of the reference line. Also derived is a stability condition for the $\sigma$ variation based on Lyapunov theory. Simulation results show that the proposed guidance law can be applied effectively to UAV guidance algorithm design.

Moment method analysis of the moreno directional coupler (모멘트법을 이용한 moreno 방향성 결합기 해석)

  • 박면주;전대인;안병철;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1842-1849
    • /
    • 1996
  • This paper presents a full-wave, moment method analysis of a Moreno directional coupler with tow crossed-slots between two crossed rectangular waveguides. the overall structure is divided into several rectangular waveguides and cavities by the use of the equivalence principle to the complex slot regions. this enables a simple and efficient analysis involving the well-known retangular waveguide/cavity Green's functions. For a numerically efficient simulation, the roof-top basis expansion and line testing is used and an acceleration technique is applied to the series summation in the Green's functions. The numerical results are compared with the measurements to verify the correctness of the present analysis.

  • PDF

Gun fire Control System Design with Maneuvering Target State Estimates (기동표적의 상태추정을 이용한 포의 사격통제 시스템 향상 연구)

  • Lee, Dong-Gwan;Song, Taek-Lyul;Han, Du-Hee
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.98-109
    • /
    • 2006
  • Fire control system(FCS) errors can be classified as hardware errors, filter prediction errors, effective ballistic function errors, and aiming errors. Among these errors, the filter prediction errors are the most significant error sources. To reduce them, a target future position calculation method using the acceleration estimate is suggested and it is compared with the constant velocity target prediction method. Simulation results show that the suggested method has better performance than the constant velocity prediction method. Target tracking algorithm is established with multiple target tracking filters based on IMM structure.

Tension Control Using On-Line Compensation of Friction Loss for Continuous Strip Processing Line (연속 공정 라인의 실시간 마찰손 보상을 통한 장력 제어 특성 개선)

  • Lee, Jeong-Uk;Choi, Chang-Ho;Hyun, Dong-Seuk
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.701-707
    • /
    • 2000
  • This paper proposes a tension control to compensate friction loss using on-line friction torque observer for a continuous strip processing line. Friction loss of roller results in significant deviation of strip tension, accordingly it has an influence on the operation of other adjacent rolls. To avoid tension variation of the strip, a friction torque observer is designed in adjacent roll, which operates in speed control mode. The observed torque is added to the torque limit reference of the pay-off reel for on-line compensation of both friction loss and acceleration/deceleration torque at the same time. The simulation and experimental results show improvement of tension control performance by the proposed friction compensation method.

  • PDF

Longitudinal Motion Control of Vehicles Using Adaptive Sliding Mode Cascade Observer (적응 슬라이딩 모드 축차 관측기를 이용한 직진 주행 차량 제어)

  • Kim Eung-Seok;Kim Cheol-Jin;Rhee Hyung-Chan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method is used to estimate the vehicle parameters, mass, time constant, etc. The inter-vehicle spacing and its derivatives are estimated by using the sliding mode cascade observer introduced in this paper. It is shown that the proposed adaptive controller is uniformly ultimately bounded. It is also shown that the errors of the relative distance, the relative velocity and the relative acceleration asymptotically converge to zero. The simulation results are presented to investigate the effectiveness of the proposed method.