• Title/Summary/Keyword: Simulate Degradation

Search Result 147, Processing Time 0.024 seconds

Root cause analysis on the phenomenon of voltage drop of connector used in the automotive throttle body control (스로틀 바디 제어신호 전달용 커넥터의 이상전압 강하 현상 원인 규명)

  • Cho, Young-Jin;Chang, Seog-Weon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1792-1797
    • /
    • 2007
  • This paper try to find root-cause of failure in a connector used in transmitting signals for throttle body control in automotives by analyzing possible failure causes and performing experiments to simulate the cable failure in field. The connector comprises fins, wires, and case moldings. The failure is due to degradation of initial clamping force required fixing fins and wires in the connector. Expansion and compression of the case molding material surrounding fins would cause the degradation. Investigations of strict initial claming force and control of thermal expansion property of the molding are required to prevent the failure.

  • PDF

Change of the Characteristics of ZnO Arrester Blocks by Lightning Impulse Current (산화아연형 피뢰기 소자의 뇌충격전류에 의한 특성 변화)

  • Han, Joo-Sup;Song, Jae-Yong;Kil, Gyung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.907-909
    • /
    • 1998
  • This paper describes the effect of impulse current on degradation of ZnO blocks. In this study, an impulse current generator which can produce 8/20 [${\mu}s$], 3 [kA] and 4/10 [${\mu}s$], 5 [kA] waveform is designed and fabricated to simulate the lightning impulse current. The residual voltage, reference voltage, and leakage current flowing to the ZnO blocks are observed. The experimental results show that the leakage current increases continuously with the number of applied impulse current, but no significant changes in residual voltage and in operating voltage are observed until the ZnO block is destroyed. Also, it is confirmed that the main factor on degradation of ZnO blocks is rather the total energy applied to ZnO blocks than the peak value of the impulse current.

  • PDF

Circuit-Level Reliability Simulation and Its Applications (회로 레벨의 신뢰성 시뮬레이션 및 그 응용)

  • 천병식;최창훈;김경호
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.1
    • /
    • pp.93-102
    • /
    • 1994
  • This paper, presents SECRET(SEC REliability Tool), which predicts reliability problems related to the hot-carrier and electromigration effects on the submicron MOSFETs and interconnections. To simulate DC and AC lifetime for hot-carrier damaged devices, we have developed an accurate substrate current model with the geometric sensitivity, which has been verified over the wide ranges of transistor geometries. A guideline can be provided to design hot-carrier resistant circuits by the analysis of HOREL(HOT-carrier RFsistant Logic) effect, and circuit degradation with respect to physical parameter degradation such as the threshold voltage and the mobility can also be expected. In SECRET, DC and AC MTTF values of metal lines are calculated based on lossy transmission line analysis, and parasitic resistances, inductances and capacitances of metal lines are accurately considered when they operate in the condition of high speed. Also, circuit-level reliability simulation can be applied to the determination of metal line width and-that of optimal capacitor size in substrate bias generation circuit. Experimental results obtained from the several real circuits show that SECERT is very useful to estimate and analyze reliability problems.

  • PDF

Inelastic analysis of RC beam-column subassemblages under various loading histories

  • You, Young-Chan;Yi, Waon-Ho;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.69-80
    • /
    • 1999
  • The purpose of this study is to propose an analytical model for the simulation of the hysteretic behavior of RC (reinforced concrete) beam-column subassemblages under various loading histories. The discrete line element with inelastic rotational springs is adopted to model the different locations of the plastic hinging zone. The hysteresis model can be adopted for a dynamic two-dimensional inelastic analysis of RC frame structures. From the analysis of test results it is found that the stiffness deterioration caused by inelastic loading can be simulated with a function of basic pinching coefficients, ductility ratio and yield strength ratio of members. A new strength degradation coefficient is proposed to simulate the inelastic behavior of members as a function of the transverse steel spacing and section aspect ratio. The energy dissipation capacities calculated using the proposed model show a good agreement with test results within errors of 27%.

Electrical Impedance Change due to Contamination at the Contact Interface of Connectors for Automobile Crank Shaft Position Sensor

  • Kim, Young-Tae;Sung, In-Ha;Kim, Dae-Eun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.46-52
    • /
    • 2004
  • Numerous connectors are used in automobiles for transmission of electrical signals across various electro-mechanical components. The connectors must operate with high reliability in order to minimize failures due to signal degradation. In this work, the effects of contamination at the contact interface of connectors used fur automobile crankshaft position sensor on the impedance change were investigated. An experimental set-up was built to simulate the electrical signal transmitted from the sensor to the engine control unit through a connector. Output from the connector was investigated using connectors contaminated with engine block residues and water droplets. It was found that slight contamination of the connectors could lead to significant signal degradation which can lead to engine failure. Also, the effect of water in the connector altered the signal severely. However, the signal gradually regained the original state as the water evaporated from the interface.

Effects of Foundation Motions on Dynamic Behaviors of a Bridge under Seismic Excitations (교량거동에 미치는 기초의 회전 및 병진운동의 영향)

  • 김상효;마호성;함형진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.216-222
    • /
    • 1998
  • Effects of translational and rotational motions of the foundation on the dynamic behaviors of a bridge under seismic excitations are examined by utilizing a simplified 3 degree-of-freedom of system. To consider the nonlinear characteristics of the RC pier, a hysteresis model is adapted, which can simulate the inelastic motion of the pier with the stiffness degradation. From results, the portion of the total displacement due to rotational motion of the foundation becomes larger as applied seismic excitation increases.

  • PDF

Study on Velocity In-homogeneous Effect in fat and its Correction in Ultrasound Imaging System (초음파 의료영상에서 지방조직의 음속도 불균일 효과의 영향과 그 보상에 관한 연구)

  • Kim, Jae-Hyeon;Bae, Mu-Ho;Jeong, Mok-Geun
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.9-18
    • /
    • 1998
  • In this paper, we present the degradation of focusing induced by velocity inhomogeneity in human tissue. For simulation, the fatty layer which is the major factor of degradation for its lower velocity, is modeled as a uniform velocity perturbation layer. And we simulate the degradation of resolution resulting from change of beam path due to refraction and the time delay due to velocity difference. We show that focusing error can be compensated for considering the velocity inhomogeneity only. The proposed compensation method can be operated in real time in the presently used digital focusing systems.

  • PDF

An Electro-chemical Combined-stress Degradation Test of Rubber for Automotive Radiator Hoses (자동차 냉각기 호스용 고무의 전기화학적 복합노화시험)

  • Kwak, Seung-Bum;Seo, Boo-Seok;Choi, Nak-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.107-113
    • /
    • 2011
  • Coolant rubber hoses for automotive radiators under thermal and mechanical loadings can be degraded and thus failed due to the influences of the locally formed electricity. In this study, an advanced test method was developed to simulate the failure problem of the rubber hose. For carbon black filled EPDM (ethylene-propylene dine monomer) rubber used as a radiator hose material the ageing behaviors by the electro-chemical stresses combined with a tensile strain were analyzed. As the tensile strain increased, the current of the rubber specimen reduced indicating an increase of the internal defects and electrical resistance of the rubber specimen. Elongation at break and IRHD hardness rapidly decreased with increasing the ageing time. Both electro-chemical stress and mechanical tensile stress clearly accelerated the degradation of EPDM rubber.

A comprehensive study of the effects of long-term thermal aging on the fracture resistance of cast austenitic stainless steels

  • Collins, David A.;Carter, Emily L.;Lach, Timothy G.;Byun, Thak Sang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.709-731
    • /
    • 2022
  • Loss of fracture resistance due to thermal aging degradation is a potential limiting factor affecting the long-term (80+ year) viability of nuclear reactors. To evaluate the effects of decades of aging in a practical time frame, accelerated aging must be employed prior to mechanical characterization. In this study, a variety of chemically and microstructurally diverse austenitic stainless steels were aged between 0 and 30,000 h at 290-400 ℃ to simulate 0-80+ years of operation. Over 600 static fracture tests were carried out between room temperature and 400 ℃. The results presented include selected J-R curves of each material as well as K0.2mm fracture toughness values mapped against aging condition and ferrite content in order to display any trends related to those variables. Results regarding differences in processing, optimal ferrite content under light aging, and the relationship between test temperature and Mo content were observed. Overall, it was found that both the ferrite volume fraction and molybdenum content had significant effects on thermal degradation susceptibility. It was determined that materials with >25 vol% ferrite are unlikely to be viable for 80 years, particularly if they have high Mo contents (>2 wt%), while materials less than 15 vol% ferrite are viable regardless of Mo content.

Performance analysis of automatic depressurization system in advanced PWR during a typical SBLOCA transient using MIDAC

  • Sun, Hongping;Zhang, Yapei;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.937-946
    • /
    • 2020
  • The aim in the present work is to simulate accident scenarios of AP1000 during the small-break loss-of-coolant accident (SBLOCA) and investigate the performance and behavior of automatic depressurization system (ADS) during accidents by using MIDAC (The Module In-vessel Degradation severe accident Analysis Code). Four types of accidents with different hypothetical conditions were analyzed in this study. The impact on the thermal-hydraulic of the reactor coolant system (RCS), the passive core cooling system and core degradation was researched by comparing these types. The results show that the RCS depressurization becomes faster, the core makeup tanks (CMT) and accumulators (ACC) are activated earlier and the effect of gravity water injection is more obvious along with more ADS valves open. The open of the only ADS1-3 can't stop the core degradation on the basis of the first type of the accident. The open of ADS1-3 has a great impact on the injection time of ACC and CMT. The core can remain intact for a long time and the core degradation can be prevent by the open of ADS-4. The all results are significant and meaningful to understand the performance and behavior of the ADS during the typical SBLOCA.