• Title/Summary/Keyword: Simplified vehicle model

Search Result 115, Processing Time 0.025 seconds

Dynamic interaction analysis of vehicle-bridge system using transfer matrix method

  • Xiang, Tianyu;Zhao, Renda
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.111-121
    • /
    • 2005
  • The dynamic interaction of vehicle-bridge is studied by using transfer matrix method in this paper. The vehicle model is simplified as a spring-damping-mass system. By adopting the idea of Newmark-${\beta}$ method, the partial differential equation of structure vibration is transformed into a differential equation irrelevant to time. Then, this differential equation is solved by transfer matrix method. The prospective application of this method in real engineering is finally demonstrated by several examples.

Stability Control of Four-Wheel Steering Vehicles (4WS 차량의 안정성 제어)

  • Ko, Young-Eun;Song, Chul-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.127-136
    • /
    • 2008
  • Vehicle stability is a very important subject in vehicle design and control, because vehicle safety is closely dependent upon its dynamic stability. The control logic for four-wheel steering(4WS) systems, in which maintaining at least the specified stability region is the control objective, was constructed using the simplified vehicle model of 3 degree-of-freedoms. The improvement of vehicle stability was verified through computer simulations for the slalom and the double lane change maneuver using the multi-body dynamic model in MSC.ADAMS.

An Experimental Study on Breakdown of Fuel Consumption on a Component Basis in a Gasoline Engine Vehicle (가솔린 차량의 각 요소별 연료소모량 분석을 위한 실험적 연구)

  • 유정철;송해박;이종화;유재석;박영무;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.153-161
    • /
    • 2004
  • A vehicle fuel economy is one of the most important issues in view of environmental regulation and customer's needs. In order to improve the vehicle fuel economy, great efforts has been carried out on the components bases. However, systematic analysis of vehicle fuel consumption is necessary for the further improvement of vehicle fuel economy. In this paper, a methodology for the breakdown of vehicle fuel consumption was studied and proposed for systematic analysis of the vehicle fuel economy. The energy equation for the vehicle power train was set up for the analysis of the vehicle fuel economy and simplified to be calculated or estimated using the measured data in a vehicle. The amount of fuel that was used in vehicle components under arbitrary driving conditions was quantified.

A STUDY ON THE MODEL-MATCHING CONTROL IN THE LONGITUDINAL AUTONOMOUS DRIVING SYSTEM

  • Kwon, S.J.;Fujioka, T.;Omae, M.;Cho, K.Y.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.135-144
    • /
    • 2004
  • In this paper, the model-matching control in the longitudinal autonomous driving system is investigated by vehicle dynamics simulation, which contains nonlinear subcomponents and simplified subcomponents. The design of the robust model-matching controller is performed by the characteristics of the 2 degrees of freedom controller, which is composed of the feedforward compensator and the feedback compensator. It makes the characteristics of tractive and brake force to be equivalent to the specific transfer function, which is suggested as the reference model. Mathematical models of vehicle dynamic analysis including the model-matching control are constructed for computer simulation. Then, simple examples on open-loop simulation without any controller and closed loop simulation with the model-matching controller are applied to check the validity of the robust controller. As the practical example, the autonomous driving system in the longitudinal direction is adopted. It is proved that the model-matching control is effective and adequate to the disturbances and the perturbations, which are shown in the responses of the change of a vehicle mass and a road gradient.

Hyundai Motor's 4th NVH open BMT - Wind noise prediction on the HSM (Hyundai simplified model) using Ansys Fluent and LMS Virtual.Lab

  • Hallez, Raphael;Lee, Sang Yeop;Khondge, Ashok;Lee, Jeongwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.562-562
    • /
    • 2014
  • Assessment of aerodynamic noise is becoming increasingly important for automotive manufacturers. Flow passing a vehicle may indeed lead to high interior noise level and affect cabin comfort. Interior noise results from various mechanisms including aerodynamic fluctuations of the disturbed flow around the side mirror or pillar, hydrodynamic and acoustic loading of the car panels and windows, vibration of these panels and acoustic radiation inside the vehicle. Objective of the present study is to capture these important mechanisms in a simulation model and demonstrate the ability of the combined simulation tools Fluent / Virtual.Lab to provide accurate aerodynamic and interior noise prediction results. Previous study focused on the noise generated by the turbulence around the A-pillar structure of the HSM (Hyundai simplified model). The present study also includes the effect of the side-mirror and rain-gutter structures. Complete modeling process is presented including details on the unsteady CFD simulation and the vibro-acoustic model with absorption materials. Guidelines and best practices for building the simulation model are also discussed.

  • PDF

Development and Evaluation of ESP Systems for Enhancement of Vehicle Stability during Cornering (II) (차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가 (II))

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1551-1556
    • /
    • 2006
  • Two yaw motion control systems that improve a vehicle lateral stability are proposed in this study: a rear wheel steering yaw motion controller (SESP) and an enhanced rear wheel steering yaw motion controller (ESESP). A SESP controls the rear wheels, while an ESESP steers the rear wheels and front outer wheel to allow the yaw rate to track the reference yaw rate. A 15 degree-of-freedom vehicle model, simplified steering system model, and driver model are used to evaluate the proposed SESP and ESESP. A robust anti-lock braking system (ABS) controller is also designed and developed. The performance of the SESP and ESESP are evaluated under various road conditions and driving inputs. They reduce the slip angle when braking and steering inputs are applied simultaneously, thereby increasing the controllability and stability of the vehicle on slippery roads.

Development of An Electric Circuit Model of Vehicle Charging-discharging System for Simulation (시뮬레이션을 위한 자동차 충 방전 시스템의 등가 회로 모델 개발)

  • Park, Hyun-Jin;SunWoo, Myoung-Ho;Lee, Jae-In
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.570-572
    • /
    • 1999
  • An equivalent circuit model of vehicle charging-discharging system for simulation is developed. The vehicle electric power system consists of alternator and battery. The alternator must have adequate capacity for providing electric energy to all loads, and the battery supports the alternator by offering insufficient energy when the alternator output energy is not enough. The alternator model is simplified for the use of characteristic curve, which was provided by its manufacturer, and the battery model is separated in charging mode and discharging mode because of its complex characteristics. Developed circuit model is validated by comparing the simulation data and real experimental data.

  • PDF

Structual Stability Analysis According to the Lumped Mass of High Speed Vehicles in Underwater (집중질량 변화에 따른 수중 고속 운동체의 구조 안정성 해석)

  • Oh, Kyung-Won;Sur, Joo-No;Cho, Byung-Gu;Ryu, Si-Ung;Kong, Gong-Duk
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.54-59
    • /
    • 2009
  • In this paper, the effect of the position and size of a lumped mass on the structural stability of a high speed underwater vehicle is presented. For simplicity, a real vehicle was modeled as a follower force subjected beam that was resting on an elastic foundation, and the lumped mass effect was simplified as an elastic intermediate support. The stability of the simplified model was numerically analyzed based on the Finite element method (FEM). This numerical simulation revealed that flutter type instability or divergence type instability occurs, depending on the position and stiffness of the elastic intermediate support, which implies that the instability of the real model is affected by the position and size of the lumped mass.

An Axisymmetrical Study on the Secondary Reaction of Launch Vehicle Turbine Exhaust Gas Using the Detailed Chemistry Model (상세 화학반응 모델을 이용한 발사체 터빈 배기가스의 이차연소 해석의 축대칭 해석)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.857-862
    • /
    • 2011
  • 3 dimensional turbine exhaust gas flow was simplified to an axisymmetrical flow and calculated with detailed chemistry models. GRI 35 species-217 reaction step model and simplified 11 species 15 reaction model was applied to the secondary reaction of the turbine exhaust gas and compared. All the model captured the secondary combustion on the base region, and the temperature was 600K higher than that without turbine exhaust gas. This means the local temperature of the base can be higher in the case of real 3 dimensional flow. The simplified model show the similar results to the GRI detailed chemistry model although the former affected the engine plume structure slightly.

  • PDF

Acoustical characteristic predictions of a multi-layer system of a submerged vehicle hull mounted sonar simplified to an infinite planar model

  • Kim, Sung-Hee;Hong, Suk-Yoon;Song, Jee-Hun;Kil, Hyun-Gwon;Jeon, Jae-Jin;Seo, Young-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.96-111
    • /
    • 2012
  • Hull Mounted Sonar (HMS) is a long range submerged vehicle's hull-mounted passive sonar system which detects low-frequency noise caused by machineries of enemy ships or submerged vehicles. The HMS needs a sound absorption /insulation multi-layer structure to shut out the self-noise from own machineries and to amplify signals from outside. Therefore, acoustic analysis of the multi-layer system should be performed when the HMS is designed. This paper simplified the HMS multi-layer system to be an infinite planar multi-layer model. Also, main excitations that influence the HMS were classified into mechanical, plane wave and turbulent flow excitation, and the investigations for each excitation were performed for various models. Stiffened multi-layer analysis for mechanical excitation and general multi-layer analysis for turbulent flow excitation were developed. The infinite planar multi-layer analysis was expected to be more useful for preliminary design stage of HMS system than the infinite cylindrical model because of short analysis time and easiness of parameter study.