• 제목/요약/키워드: Simple shear

검색결과 821건 처리시간 0.024초

Sand-Nonwoven geotextile interfaces shear strength by direct shear and simple shear tests

  • Vieira, Castorina Silva;Lopes, Maria de Lurdes;Caldeira, Laura
    • Geomechanics and Engineering
    • /
    • 제9권5호
    • /
    • pp.601-618
    • /
    • 2015
  • Soil-reinforcement interaction mechanism is an important issue in the design of geosynthetic reinforced soil structures. This mechanism depends on the soil properties, reinforcement characteristics and interaction between these two elements (soil and reinforcement). In this work the shear strength of sand/geotextile interfaces were characterized through direct and simple shear tests. The direct shear tests were performed on a conventional direct shear device and on a large scale direct shear apparatus. Unreinforced sand and one layer reinforced sand specimens were characterized trough simple shear tests. The interfaces shear strength achieved with the large scale direct shear device were slightly larger than those obtained with the conventional direct shear apparatus. Notwithstanding the differences between the shear strength characterization through simple shear and direct shear tests, it was concluded that the shear strength of one layer reinforced sand is similar to the sand/geotextile interface direct shear strength.

A novel dual stress/strain-controlled direct simple shear apparatus to study shear strength and shear creep of clay

  • Chen Ge;Zhu Jungao;Wang Tao;Li Jian;Lou Qixun;Li Tao
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.615-627
    • /
    • 2024
  • Direct simple shear test is an effective method to measure strength and deformation properties of soil. However, existing direct simple shear apparatus have some shortcomings. The paper has developed a novel dual stress/strain-controlled direct simple shear apparatus. The novel apparatus has the following advantages: A rectangular specimen is used that effectively avoid common issues associated with conventional cylindrical specimens, such as specimen tilting. The utilization of deformation control rods ensures a uniform shear deformation of the specimen. Vertically integrated force transmission structure is improved that avoids issues arising from changes in pivot points due to lever tilting. Incorporating this novel direct simple shear apparatus, shear strength and shear creep tests of clay were performed. Shear strength parameters and shear creep behaviors are analyzed. The results of these experiments show that the novel apparatus can measure accurately the shear rheological properties of soil. This study provides strong guidance for studying the mechanical properties of soil in engineering practice.

PSC 바닥판의 뚫림전단강도 예측을 위한 단순트러스모델 개선 연구 (A Study on the Modified Simple Truss Model to Predict the Punching Shear Strength of PSC Deck Slabs)

  • 박우진;황훈희
    • 한국안전학회지
    • /
    • 제30권5호
    • /
    • pp.67-73
    • /
    • 2015
  • In this paper, the simple truss model was modified to predict the punching shear strength of long-span prestressed concrete (PSC) deck slabs under wheel load including the effects of transverse prestressing and long span length between girders. The strength of the compressive zone arounding punching cone was evaluated by the stiffness of inclined strut which was modified by considering aging effective modulus. The stiffness of springs which control lateral displacement of the roller supports consists of the steel reinforcement and prestressing which passed through the punching cone. Initial angle of struts was determined by the experimental observation to compensate for uncertainties in the complexities of the punching shear. The validity of computed punching shear strength by modified simple truss model was shown by comparing with experimental results and the experimental results were also compared with existing punching shear equations to determine level of predictability. The modified simple truss model appeared to better predict the punching shear strength of PSC deck slabs than other available equations. The punching shear strength, which was determined by snap-through critical load of modified simple truss model, can be used effectively to examine punching shear strength of long span PSC deck slabs.

단순전단 시험법 구축 및 바우싱거효과를 고려한 경화거동 예측 (Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Bauschinger Effect)

  • 김동욱;방성식;김민수;이형일;김낙수
    • 대한기계학회논문집A
    • /
    • 제37권10호
    • /
    • pp.1239-1249
    • /
    • 2013
  • 본 연구에서는 zircaloy-4 판재에 대해 바우싱거 효과를 고려한 경화거동 예측모델을 구축했다. 금속소재 가공에서 인장 후 압축 시 항복응력이 감소한다. 이에 스프링백 해석 시 바우싱거 효과를 반드시 고려해야 한다. Simple shear 시험에서 적정 시편크기 및 적정 조임토크에 대한 결정법을 제시했다. 5 가지 재료에 대한 simple shear 시험을 통해 응력-변형률 곡선을 구했다. 또한 유한요소해석을 활용해 simple shear 하중-변위 곡선으로부터 유효응력-변형률 곡선으로 변환과정을 소개했다. 등방/운동성 경화 조합모델을 활용해 simple shear 순/역방향 시험을 모사했다. 이때 각 경화계수에 따른 하중-변위 곡선 변화를 관찰하고, zircaloy-4에 대한 경화계수를 결정했다.

Experimental study on crushable coarse granular materials during monotonic simple shear tests

  • Liu, Sihong;Mao, Hangyu;Wang, Yishu;Weng, Liping
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.687-694
    • /
    • 2018
  • To investigate the crushing behaviour of coarse granular materials, a specifically designed, large-scale simple shear apparatus with eight-staged shearing rings was developed. A series of monotonic simple shear tests were conducted on two kinds of coarse granular materials under different vertical stresses and large shear strains. The evolution of the particle breakage during the compression and simple shearing processes was investigated. The results show that the amount of particle breakage is related to the particle hardness and the state of the stresses. The amount of particle breakage is greater for softer granular materials and increases with increasing vertical stresses. Particle breakage may tend towards a critical value during both the compression and the shearing processes. Particle breakage mainly occurs during the processes of confined compression and contraction.

A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates

  • Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bessaim, Aicha;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.257-276
    • /
    • 2016
  • In this paper, a new simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded (FG) plates is developed. The significant feature of this formulation is that, in addition to including a sinusoidal variation of transverse shear strains through the thickness of the plate, it deals with only three unknowns as the classical plate theory (CPT), instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The accuracy of the present solutions is verified by comparing the obtained results with those predicted by classical theory, first-order shear deformation theory, and higher-order shear deformation theory. Verification studies show that the proposed theory is not only accurate and simple in solving the bending and free vibration behaviours of FG plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

대나무(대체근계)의 토질강도보강효과에 대한 실험적 연구 -토양수분제어하의 단순전단시험에 의한 해석- (Experimental Study on Reinforcement Effectives of Soil Shear Strength by Bamboo(Substitute Materials Simulating a Root System) -Analysis caused by Simple Shear Test under Soil Suction Control-)

  • 이창우
    • 한국환경복원기술학회지
    • /
    • 제7권2호
    • /
    • pp.46-51
    • /
    • 2004
  • In this paper, reinforcement of soil shear strength by bamboo(substitute materials simulating a root system) are evaluated by soil strength parameters(apparent cohesion(c) and internal friction angle(tan${\Phi}$)), using simple shear tester which clearly depicts shear deformation and controls soil suction. The results show that the internal friction angle does not change under various soil suction conditions but the apparent cohesion, which reach a peak in suction of 45cm$H_2O$ near critical capillary head, is effected by soil suction. And the reinforcement of soil strength by bamboo are expressed by apparent cohesion more than internal friction angle. In addition the increment of apparent cohesion by bamboo reached a peak in suction 45cm$H_2O$ too.

전단유동에서 온도, 전단속도, 계면장력 변화에 따른 에멀전의 유변학적 특성 (Relative Viscosity of Emulsions in Simple Shear Flow: Temperature, Shear Rate, and Interfacial Tension Dependence)

  • 최세빈;이준상
    • 대한기계학회논문집B
    • /
    • 제39권8호
    • /
    • pp.677-682
    • /
    • 2015
  • 격자 볼츠만 기법(Lattice Boltzmann method)을 사용하여 에멀전의 유변학적 특성을 파악하기 위한 시뮬레이션을 수행하였다. 간단한 전단 유동하에서 온도와 전단속도, 계면장력에 변화를 주어 에멀전(decane-in-water)의 상대점도를 계산하고 이를 분석하였다. 에멀전의 상대점도는 온도가 증가함에 따라 감소하였고, 전단속도가 증가함에 따라 감소하는 전단박하(Shear thinning) 현상을 보여주었다. 이는 크로스 모델(Cross model)을 통해 검증하였고 일치하는 경향을 보여주었다. 계면에 존재하는 계면활성제(Surfactant)를 통해 제어되는 계면장력이 증가할수록 상대점도는 감소하는 경향을 보여주었다. 이것은 큰 계면장력에서는 기름방울의 변형이 억제되고 점도가 상대적으로 높은 기름방울의 표면적이 감소하면서 나타난다고 해석할 수 있다.

A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations

  • Hachemi, Houari;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Bourada, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.717-726
    • /
    • 2017
  • In this paper, a new simple shear deformation theory for bending analysis of functionally graded plates is developed. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not required. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. Equations of motion are obtained by utilizing the principle of virtual displacements and solved via Navier's procedure. The elastic foundation is modeled as two parameter elastic foundation. The results are verified with the known results in the literature. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, elastic foundation, and volume fraction distributions are studied. Verification studies show that the proposed theory is not only accurate and simple in solving the bending behaviour of functionally graded plates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns.

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제58권3호
    • /
    • pp.397-422
    • /
    • 2016
  • In the present work, a simple first-order shear deformation theory is developed and validated for a variety of numerical examples of the thermal buckling response of functionally graded sandwich plates with various boundary conditions. Contrary to the conventional first-order shear deformation theory, the present first-order shear deformation theory involves only four unknowns and has strong similarities with the classical plate theory in many aspects such as governing equations of motion, and stress resultant expressions. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are considered as uniform, linear and non-linear temperature rises within the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates. Moreover, numerical results prove that the present simple first-order shear deformation theory can achieve the same accuracy of the existing conventional first-order shear deformation theory which has more number of unknowns.