• Title/Summary/Keyword: Simple Compression Test

Search Result 120, Processing Time 0.023 seconds

Evaluation of Flow Stress of Metal up to High Strain (금속소재의 고변형률 영역 유동응력선도 평가)

  • Lee, S.K.;Lee, I.K.;Lee, S.Y.;Lee, S.M.;Jeong, M.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.316-322
    • /
    • 2020
  • The flow stress curve is usually determined via uniaxial tensile or simple compression test. However, the flow stress curve up to high strain cannot be obtained using these two tests. This study presents a simple method for obtaining the flow stress curve up to high strain via FE analysis, a simple compression test, and an indentation test. In order to draw the flow stress curve up to high strain, the indentation test was carried out with the pre-stained specimen using the simple compression test. The flow stress curve of Al6110 was evaluated up to high strain using the proposed method, and the result was compared with the flow stress curve of the uniaxial tensile test of the initial material.

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 등 이축 인장시험에 관한 연구)

  • 김완두;김동진;김완수;이영신
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.95-104
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a pure state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was fumed out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

A Study on the Equi-biaxial Tension Test of Rubber Material (고무재료의 이축 인장시험에 관한 연구)

  • Kim, Dong-Jin;Kim, Wan-Doo;Kim, Wan-Soo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.425-430
    • /
    • 2003
  • The material properties of rubber was determined by the experiments of uniaxial tension, uniaxial compression, planer tension, equi-biaxial tension and volumetric compression. In compression test, it is difficult to obtain the pure state of compression stress and strain due to friction force between the specimen and compression platen. In this study, the stress and strain data from the equi-biaxial tension test were converted to compression stress and strain and compared to a perfect state of simple compression data when friction was zero. The compression test device with the tapered platen was proposed to overcome the effect of friction. It was turned out that the relationship of the stress and strain using the tapered platen was in close agreement with the pure compressive state.

  • PDF

A Study on Material Characterization of SMC (SMC의 물성치 평가에 관한 연구)

  • 정진호;한영원;임용택
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.245-256
    • /
    • 1995
  • SMC(Sheet Molding Compound), a thermoset composite material which consists of unsaturated polyester resin, fiberglass strands, fillers, and various chemical additives for curing agent, has been widely used in fabrication of structural components. The mechanical properties of molded SMS parts are strongly dependent on material flow results during compression molding process, while such flow in molds is affected by material characteristics. For numerical simulation of SMC molding process, estimation of material property of SMC must be accomplished. In this study, flow resistance of SMC was estimated through a simple compression test using a lubricant with grease oil under the constant strain rate condition at various temperatures and the result was compared with other material data available in the literature. The accuracy of the experimentally determined flow resistance was tested by finite element analyses of compression molding of SMC. Simulation results were compared with experimental results under the plane strain condition.

  • PDF

A Study on Material Characterization and Mechanical Properties of SMC Compression Molding Parts (SMC 압축성형재의 기계적 물성 및 특성에 관한 연구)

  • 김기택;임용택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2396-2403
    • /
    • 1994
  • An experimental study on material characterization and mechanical properties of SMC(Sheet Molding Compounds) compression method parts was carried out. Simple compression test using grease oil as a lubricant was carried out to characterize flow stress of SMC at elevated temperatures. Two different mold temperatures, $130^{\circ}C{\;}and{\;}150^{\circ}C$ and two different mold speeds, 15, 45 mm/min were used for preparing the specimen of SMC compression molded parts. Surface roughness, tensile, and 3-point bending tests were used to determine the effects of molding temperatures and speeds on mechanical properties of compression molded SMC parts. Orientation and distribution of glass fiber in the compression molded SMC parts were also investigated by photographing the burnt flat specimen and taking SEM(Scanning Electron Microscope) of cross-sectional T-specimen.

A Study on Material Charaterization and Mechanical Properties of SMC Compression Molding Parts (SMC 압축성형재의 기계적 물성 및 특성에 관한 연구)

  • 김기택;정진호;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.139-148
    • /
    • 1994
  • An experimental study on material characterization and mechanical properties of SMC(Sheet Molding Compounds) compression molding parts was carried out. Simple compression test using grease oil as a lubricant was carried out to characterize flow stress of SMC at elevated temperatures. Two different mold temperatures, 130$^{\circ}C$ and 150$^{\circ}C$ and two different mold speeds, 15, 45mm/min were used for preparing the specimen of SMC compression molding parts. Surface roughness, tensile, and 3-point bending tests were used to determine the effects of molding temperatures and speeds on mechanical properties of compression molded SMC parts.

  • PDF

Test Data Compression for SoC Testing (SoC 테스트를 위한 테스트 데이터 압축)

  • Kim Yun-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.6
    • /
    • pp.515-520
    • /
    • 2004
  • Core-based system-on-a-chip (SoC) designs present a number of test challenges. Two major problems that are becoming increasingly important are long application time during manufacturing test and high volume of test data. Highly efficient compression techniques have been proposed to reduce storage and application time for high volume data by exploiting the repetitive nature of test vectors. This paper proposes a new test data compression technique for SoC testing. In the proposed technique, compression is achieved by partitioning the test vector set and removing repeating segment. This process has $O(n^{-2})$ time complexity for compression with a simple hardware decoding circuitry. It is shown that the efficiency of the proposed compression technique is comparable with sophisticated software compression techniques with the advantage of easy and fast decoding.

  • PDF

A Yield Function for Sintered Porous Metals (소결분말금속의 항복함수)

  • 박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1115-1122
    • /
    • 1993
  • Several yield criteria for porous materials are compared with each other, defining the apparent yield stress as the yield stress of the porous material in simple compression. It was found that the plastic Poisson's ratio is the parameter needed to define the yield criterion, rather than the relative density. The plastic Poisson's ratio is regarded as a material characteristic that is obtained from a simple compression test. A new form of yield criterion was suggested, and it was applied to hydrostatic compression as well as uniaxial strain compression of sintered Al-2024 powder. The crossover point in the mean stress vs volume change curves of the processes was predicted. It is presented that the flow stress of the fully densed material can be obtained from that of the porous material using relations obtained from the yield criterion.

An Internal Pattern Run-Length Methodology for Slice Encoding

  • Lee, Lung-Jen;Tseng, Wang-Dauh;Lin, Rung-Bin
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.374-381
    • /
    • 2011
  • A simple and effective compression method is proposed for multiple-scan testing. For a given test set, each test pattern is compressed from the view of slices. An encoding table exploiting seven types of frequently-occurring pattern is used. Compression is then achieved by mapping slice data into codewords. The decompression logic is small and easy to implement. It is also applicable to schemes adopting a single-scan chain. Experimental results show this method can achieve good compression effect.

축변환 구성방정식을 이용한 암석 이방성 탄성계수 산정

  • 김영수;이재호;허노영;박영화;최정호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.729-736
    • /
    • 2000
  • For nonhomogeneous and anisotropic rocks such as schist, shale, etc, a method to determine the anisotropic elastic constants was proposed. Many authors have investigated in detail the behavior elastic constants of anisotropy rocks(Pinto 1970, Amadei 1983, 1992, Amadei & Savage 1989). They concluded that equations of elastic constants E$_1$, E$_2$ and G$_2$ can be derived from the measured strains in arbitrary three directions. And, modulus of elasticity varies according to the inclination of discontinuity in specimens. If we attach three strain gages in accordance with the directions of anisotropy on the rock specimen under uni-axial compression and diametral compression tests, anisotropy elastic constants can be determined by these equations. With this method, the degree of anisotropy will be easily evaluated by simple laboratory test. This paper presents the results of elastic constants due to the angle of bedding planes of anisotropic rock, such as shale, in uni-axial compression and diametral compression tests

  • PDF