• 제목/요약/키워드: Similarity recognition

검색결과 396건 처리시간 0.022초

Design of Solving Similarity Recognition for Cloth Products Based on Fuzzy Logic and Particle Swarm Optimization Algorithm

  • Chang, Bae-Muu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4987-5005
    • /
    • 2017
  • This paper introduces a new method to solve Similarity Recognition for Cloth Products, which is based on Fuzzy logic and Particle swarm optimization algorithm. For convenience, it is called the SRCPFP method hereafter. In this paper, the SRCPFP method combines Fuzzy Logic (FL) and Particle Swarm Optimization (PSO) algorithm to solve similarity recognition for cloth products. First, it establishes three features, length, thickness, and temperature resistance, respectively, for each cloth product. Subsequently, these three features are engaged to construct a Fuzzy Inference System (FIS) which can find out the similarity between a query cloth and each sampling cloth in the cloth database D. At the same time, the FIS integrated with the PSO algorithm can effectively search for near optimal parameters of membership functions in eight fuzzy rules of the FIS for the above similarities. Finally, experimental results represent that the SRCPFP method can realize a satisfying recognition performance and outperform other well-known methods for similarity recognition under considerations here.

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

Combining Different Distance Measurements Methods with Dempster-Shafer-Theory for Recognition of Urdu Character Script

  • Khan, Yunus;Nagar, Chetan;Kaushal, Devendra S.
    • International Journal of Ocean System Engineering
    • /
    • 제2권1호
    • /
    • pp.16-23
    • /
    • 2012
  • In this paper we discussed a new methodology for Urdu Character Recognition system using Dempster-Shafer theory which can powerfully estimate the similarity ratings between a recognized character and sampling characters in the character database. Recognition of character is done by five probability calculation methods such as (similarity, hamming, linear correlation, cross-correlation, nearest neighbor) with Dempster-Shafer theory of belief functions. The main objective of this paper is to Recognition of Urdu letters and numerals through five similarity and dissimilarity algorithms to find the similarity between the given image and the standard template in the character recognition system. In this paper we develop a method to combine the results of the different distance measurement methods using the Dempster-Shafer theory. This idea enables us to obtain a single precision result. It was observed that the combination of these results ultimately enhanced the success rate.

Viewpoint Unconstrained Face Recognition Based on Affine Local Descriptors and Probabilistic Similarity

  • Gao, Yongbin;Lee, Hyo Jong
    • Journal of Information Processing Systems
    • /
    • 제11권4호
    • /
    • pp.643-654
    • /
    • 2015
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we propose using the combination of Affine Scale Invariant Feature Transform (SIFT) and Probabilistic Similarity for face recognition under a large viewpoint change. Affine SIFT is an extension of SIFT algorithm to detect affine invariant local descriptors. Affine SIFT generates a series of different viewpoints using affine transformation. In this way, it allows for a viewpoint difference between the gallery face and probe face. However, the human face is not planar as it contains significant 3D depth. Affine SIFT does not work well for significant change in pose. To complement this, we combined it with probabilistic similarity, which gets the log likelihood between the probe and gallery face based on sum of squared difference (SSD) distribution in an offline learning process. Our experiment results show that our framework achieves impressive better recognition accuracy than other algorithms compared on the FERET database.

물체인식을 위한 영상분할 기법과 퍼지 알고리듬을 이용한 유사도 측정 (An Image Segmentation Method and Similarity Measurement Using fuzzy Algorithm for Object Recognition)

  • 김동기;이성규;이문욱;강이석
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.125-132
    • /
    • 2004
  • In this paper, we propose a new two-stage segmentation method for the effective object recognition which uses region-growing algorithm and k-means clustering method. At first, an image is segmented into many small regions via region growing algorithm. And then the segmented small regions are merged in several regions so that the regions of an object may be included in the same region using typical k-means clustering method. This paper also establishes similarity measurement which is useful for object recognition in an image. Similarity is measured by fuzzy system whose input variables are compactness, magnitude of biasness and orientation of biasness of the object image, which are geometrical features of the object. To verify the effectiveness of the proposed two-stage segmentation method and similarity measurement, experiments for object recognition were made and the results show that they are applicable to object recognition under normal circumstance as well as under abnormal circumstance of being.

Style-Specific Language Model Adaptation using TF*IDF Similarity for Korean Conversational Speech Recognition

  • Park, Young-Hee;Chung, Min-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • 제23권2E호
    • /
    • pp.51-55
    • /
    • 2004
  • In this paper, we propose a style-specific language model adaptation scheme using n-gram based tf*idf similarity for Korean spontaneous speech recognition. Korean spontaneous speech shows especially different style-specific characteristics such as filled pauses, word omission, and contraction, which are related to function words and depend on preceding or following words. To reflect these style-specific characteristics and overcome insufficient data for training language model, we estimate in-domain dependent n-gram model by relevance weighting of out-of-domain text data according to their n-. gram based tf*idf similarity, in which in-domain language model include disfluency model. Recognition results show that n-gram based tf*idf similarity weighting effectively reflects style difference.

Statistical Fingerprint Recognition Matching Method with an Optimal Threshold and Confidence Interval

  • Hong, C.S.;Kim, C.H.
    • 응용통계연구
    • /
    • 제25권6호
    • /
    • pp.1027-1036
    • /
    • 2012
  • Among various biometrics recognition systems, statistical fingerprint recognition matching methods are considered using minutiae on fingerprints. We define similarity distance measures based on the coordinate and angle of the minutiae, and suggest a fingerprint recognition model following statistical distributions. We could obtain confidence intervals of similarity distance for the same and different persons, and optimal thresholds to minimize two kinds of error rates for distance distributions. It is found that the two confidence intervals of the same and different persons are not overlapped and that the optimal threshold locates between two confidence intervals. Hence an alternative statistical matching method can be suggested by using nonoverlapped confidence intervals and optimal thresholds obtained from the distributions of similarity distances.

음성인식 후처리에서 음소 유사율을 이용한 오류보정에 관한 연구 (A Study on Error Correction Using Phoneme Similarity in Post-Processing of Speech Recognition)

  • 한동조;최기호
    • 한국ITS학회 논문지
    • /
    • 제6권3호
    • /
    • pp.77-86
    • /
    • 2007
  • 최근 텔레매틱스 단말기 등과 같이 음성인식을 인터페이스로 하는 음성기반 검색시스템들이 많이 개발되고 있다. 그러나 음성인식에는 여전히 많은 오류가 존재하며, 이에 오류보정에 대한 여러 가지 연구가 진행되고 있다. 본 논문에서는 한국어의 음소가 갖는 특징을 기반으로 음성인식 후처리에서의 오류보정을 제안하였다. 이를 위해 한국어 음소의 특징을 고려한 음소 유사율을 사용하였다. 음소 유사율은 훈련데이터를 모노폰으로 훈련시켜 한국어 음소 각각에 대하여 MFCC와 LPC 특징추출방법을 사용하여 특징추출을 수행하고, 바타차랴 거리 측정법을 사용하여 각 음소 사이의 유사율을 구하였다. 음소 유사율과 신뢰도를 이용하여 오류보정률을 구하였으며, 이를 사용하여 음성인식 과정에서 오류로 판명된 어절에 대하여 오류보정을 수행하고, 음절 복원과 형태소 분석을 재수행하는 과정을 거쳤다. 실험 결과 MFCC와 LPC 각각 7.5%와 5.3%의 인식 향상률을 보였다.

  • PDF

Improvement of Three Mixture Fragrance Recognition using Fuzzy Similarity based Self-Organized Network Inspired by Immune Algorithm

  • Widyanto, M.R.;Kusumoputro, B.;Nobuhara, H.;Kawamoto, K.;Yoshida, S.;Hirota, K.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.419-422
    • /
    • 2003
  • To improve the recognition accuracy of a developed artificial odor discrimination system for three mixture fragrance recognition, Fuzzy Similarity based Self-Organized Network inspired by Immune Algorithm (F-SONIA) is proposed. Minimum, average, and maximum values of fragrance data acquisitions are used to form triangular fuzzy numbers. Then the fuzzy similarity treasure is used to define the relationship between fragrance inputs and connection strengths of hidden units. The fuzzy similarity is defined as the maximum value of the intersection region between triangular fuzzy set of input vectors and the connection strengths of hidden units. In experiments, performances of the proposed method is compared with the conventional Self-Organized Network inspired by Immune Algorithm (SONIA), and the Fuzzy Learning Vector Quantization (FLVQ). Experiments show that F-SONIA improves recognition accuracy of SONIA by 3-9%. Comparing to the previously developed artificial odor discrimination system that used FLVQ as pattern classifier, the recognition accuracy is increased by 14-25%.

  • PDF

MFCC와 LPC 특징 추출 방법을 이용한 음성 인식 오류 보정 (Speech Recognition Error Compensation using MFCC and LPC Feature Extraction Method)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제11권6호
    • /
    • pp.137-142
    • /
    • 2013
  • 음성 인식 시스템은 부정확한 음성 신호의 입력으로 특징을 추출하여 인식할 경우 오인식의 결과가 나타나거나 유사한 음소로 인식된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 음소 유사율과 신뢰도 측정을 이용한 음성 인식 오류 보정 방법을 제안하였다. 음소 유사율은 학습 모델의 음소에 MFCC와 LPC 특징 추출 방법을 이용하여 구하였으며 신뢰도로 측정하였다. 음소 유사율과 신뢰도를 측정하여 오인식되는 오류를 최소화하였으며 음성 인식 과정에서 오류로 판명된 음성에 대하여 오류 보정을 수행하였다. 본 논문에서 제안한 시스템을 적용한 결과 98.3%의 인식률과 95.5%의 오류 보정율을 나타내었다.