In this study, we suggest a method to predict probability distribution of a new customer's degree of loyalty using C-CRF that reflects the RFM score and similarity to the neighbors of the customer. An RFM score prediction model is introduced to construct the first feature function of C-CRF. Integrating demographical similarity, purchasing characteristic similarity and purchase history similarity, we make a unified similarity variable to configure the second feature function of C-CRF. Then parameters of each feature function are estimated and we train our C-CRF model by training data set and suggest a probabilistic distribution to estimate a new customer's degree of loyalty. An example is provided to illustrate our model.
The objective data and subjective data correlated in order to rate sound quality of loudspeaker system and these data were analyzed by the Factor Analysis and Multi-Dimensioinal Scaling. The dimensions yielded Factor Analysis were interpreted as "Contrast", "Metallic", "Rich", "Present" and their relation to physical variables were explored by studying the positions of loudspeaker systems in the respective dimension. When the subjective similarity degree of loudspeaker systems was compared with the objective similarity degree of loudspeaker systems by Multi-Dimensional Scaling, the similarity degree of sound pressure response in the listening room closely coincided with the subjective similarity degree regardless of sound source. This result implies the necessity of measurements taken not only in an anechoic room but also in a listening room in order to rate sound quality of loudspeaker systems.
In this thesis we concerned with the degree of similarity in pairs of scores having a common mean and variance could express similarity in terms of the absolute difference between the standardized scores. We particulary discussed the distribution of absolute differences between pairs of T scores among many standardized scores and demonstrated the procedures for calculating the lower limit of Med(│d│) values i. e. the maximum possible similarity with medians and correlation coefficients of the equivalent form tests by using the folded normal distribution, although other researchers expressed the degree of similarity using only the standard normal distribution. We also described many cases how to use those techniques and to apply effectively them in real evaluation fields.
In this paper we derived fuzzy entropy that is based on similarity measure. Similarity measure represents the degree of similarity between two informations, those informations characteristics are not important. First we construct similarity measure between two informations, and derived entropy functions with obtained similarity measure. Obtained entropy is verified with proof. With the help of one-to-one similarity is also obtained through distance measure, this similarity measure is also proved in our paper.
Similarity searching is a basic issue in information processing because of the large size of formal contexts and their complicated derivation operators. Recently, some researchers have focused on knowledge reduction methods by using granular computing. In this process, suitable information granules are vital to characterizing the quantities of attributes and objects. To address this problem, a novel approach to obtain an entropy-weighted concept lattice with inclusion degree and similarity distance (ECLisd) has been proposed. The approach aims to compute the combined weights by merging the inclusion degree and entropy degree between two concepts. In addition, another method is utilized to measure the hierarchical distance by considering the different degrees of importance of each attribute. Finally, the rationality of the ECLisd is validated via a comparative analysis.
This study aims at exploring the degree of phonetic similarity between Korean and Japanese vowels in terms of acoustic features by performing the speech production test on Korean speakers and Japanese speakers. For this purpose, the speech of 16 Japanese speakers for Japanese speech data, and the speech of 16 Korean speakers for Korean speech data were utilized. The findings in assessing the degree of the similarity of the 7 nearest equivalents of the Korean and Japanese vowels are as follows: First, Korean /i/ and /e/ turned out to display no significant differences in terms of F1 and F2 with their counterparts, Japanese /i/ and /e/, and the distribution of F1 and F2 of Korean /i/ and /e/ in the distributional map completely overlapped with Japanese /i/ and /e/. Accordingly, Korean /i/ and /e/ were believed to be "identical." Second, Korean /a/, /o/, and /i/ displayed a significant difference in either F1 or F2, but showed a great similarity in distribution of F1 and F2 with Japanese /a/, /o/, and /m/ respectively. Korean /a/ /o/, and /i/, therefore, were categorized as very similar to Japanese vowels. Third, Korean /u/, which has the counterpart /m/ in Japanese, showed a significant difference in both F1 and F2, and only half of the distribution overlapped. Thus, Korean /u/ was analyzed as being a moderately similar vowel to Japanese vowels. Fourth, Korean /${\wedge}$/ did not have a close counterpart in Japanese, and was classified as "the least similar vowel."
The degree of relative similarity between 2D patterns is obtained using Open-Ball Scheme. Open-Ball Scheme employs a method of transforming the geometrical information on 3D objects or 2D patterns into the features to measure the relative similarity for object(patten) recognition, with invariance on scale, rotation, and translation. The feature of an object is used to obtain the relative similarity and mapped into [0, 1] the interval of real line. For decades, Moment-Invariant Method has been used as one of the excellent methods for pattern classification and object recognition. Open-Ball Scheme uses the geometrical structure of patterns while Moment Invariant Method uses the statistical characteristics. Open-Ball Scheme is compared to Moment Invariant Method with respect to the way that it interprets two-dimensional patten classification, especially the paradigms are compared by the degree of closeness to human's intuitive understanding. Finally the effectiveness of the proposed Open-Ball Scheme is illustrated through simulations.
정보화 사회가 발전함으로써 다양한 저작권 침해 사례가 발생하고 있다. 기업간의 여러 분쟁은 소프트웨어 유사도 감정이 대부분을 차지하고 있다. 본 논문은 감정 대상 규격서의 유사도 산정 방법에 관한 연구이다. 즉, 감정 대상 규격서의 수정 및 추가 분량이 어느 정도 인지 산정하는 연구이다. 감정 분석 방법은 양측의 규격서 목차 비교하고 동일 또는 유사 부분을 찾아낸다. 유사 정도에 따라 유사도 가중치를 결정한다. 가중치는 전문가의 전문적 지식과 규격서의 유사 정도를 파악하고 부여한다. 완전히 새로 추가된 경우 유사도 가중치는 1, 일부 수정한 경우 유사도 가중치는 0.4, 기존과 거의 동일한 경우 가중치 0.05를 주어 산정한다. 본 논문을 통하여 규격서에 대한 동일 유사성 산출 결과 21.2 페이지임을 알 수 있었다.
본 논문에서는 구간값 모호집합 사이의 유사척도를 제안한다. 구간값 모호집합에서는 모호집합의 상한과 하한을 각각 구간값 퍼지집합의 구간으로 표현한다. 제안한 유사척도는 구간값 모호집합 사이의 유사척도를 평가하기 위해 기하학적 거리와 구간값 모호집합 사이의 중심점 개념을 결합한다. 우리는 제안한 유사척도에 대한 세 가지 속성도 증명한다. 제안한 방법은 구간값 모호집합 사이의 유사정도를 측정하는 유용한 방법을 제공한다.
In this Paper we derived fuzzy entropy that is based on similarity measure. Similarity measure represents the degree of similarity between two informations, those informations characteristics are not important. First we construct similarity measure between two informations, and derived entropy functions with obtained similarity measure. Obtained entropy is verified with proof. With the help of one-to-one similarity is also obtained through distance measure, this similarity measure is also proved in our paper.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.