• Title/Summary/Keyword: Similarity Role

Search Result 316, Processing Time 0.033 seconds

The Role of Metaphor and Analogy in Didactic Transposition (교수학적 변환 과정에서의 은유와 유추의 활용)

  • Lee, Kyeong-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.1
    • /
    • pp.57-71
    • /
    • 2010
  • Similarity between concept and concept, principle and principle, theory and theory is known as a strong motivation to mathematical knowledge construction. Metaphor and analogy are reasoning skills based on similarity. These two reasoning skills have been introduced as useful not only for mathematicians but also for students to make meaningful conjectures, by which mathematical knowledge is constructed. However, there has been lack of researches connecting the two reasoning skills. In particular, no research focused on the interplay between the two in didactic transposition. This study investigated the process of knowledge construction by metaphor and analogy and their roles in didactic transposition. In conclusion, three kinds of models using metaphor and analogy in didactic transposition were elaborated.

  • PDF

Optimal Image Quality Assessment based on Distortion Classification and Color Perception

  • Lee, Jee-Yong;Kim, Young-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.257-271
    • /
    • 2016
  • The Structural SIMilarity (SSIM) index is one of the most widely-used methods for perceptual image quality assessment (IQA). It is based on the principle that the human visual system (HVS) is sensitive to the overall structure of an image. However, it has been reported that indices predicted by SSIM tend to be biased depending on the type of distortion, which increases the deviation from the main regression curve. Consequently, SSIM can result in serious performance degradation. In this study, we investigate the aforementioned phenomenon from a new perspective and review a constant that plays a big role within the SSIM metric but has been overlooked thus far. Through an experimental study on the influence of this constant in evaluating images with SSIM, we are able to propose a new solution that resolves this issue. In the proposed IQA method, we first design a system to classify different types of distortion, and then match an optimal constant to each type. In addition, we supplement the proposed method by adding color perception-based structural information. For a comprehensive assessment, we compare the proposed method with 15 existing IQA methods. The experimental results show that the proposed method is more consistent with the HVS than the other methods.

Scaled Down Experiment of Retention Basin with a Rotatable Bucket Using 3D Printer (3D 프린터를 이용한 회전 버킷이 부착된 저류조의 모형 실험)

  • Park, Seong-Jik;Lee, Chang-Gu;Lee, Jemyung;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.49-55
    • /
    • 2017
  • Recently climate change and urbananization have been increased surface runoff, resulting in flooding. Retention basins have been constructed to control urban flooding by reducing peak flow rate. Recently, the retention basin plays a role in controlling combined sewer overflows (CSOs) as well as urban flooding. In this study, the retention basin with a rotatable bucket was suggested and scale down experiments was performed for the optimum design of the retention basin. Scaled down model was produced using a 3D printer after it was designed as law of similarity. Two times for operating a rotary bucket is required to sweep out the sediments deposited on the bottom of the basin. Optimized dimensions for the retention basin were width of 5 m, height of 5 m, bucket radius of 0.5 m, and bottom slope of 5.0 %. It can be concluded that the results obtained from this study can be used to design the retention basin with a rotatable bucket which does not require energy to operate.

Comparison of Fine-Tuned Convolutional Neural Networks for Clipart Style Classification

  • Lee, Seungbin;Kim, Hyungon;Seok, Hyekyoung;Nang, Jongho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • Clipart is artificial visual contents that are created using various tools such as Illustrator to highlight some information. Here, the style of the clipart plays a critical role in determining how it looks. However, previous studies on clipart are focused only on the object recognition [16], segmentation, and retrieval of clipart images using hand-craft image features. Recently, some clipart classification researches based on the style similarity using CNN have been proposed, however, they have used different CNN-models and experimented with different benchmark dataset so that it is very hard to compare their performances. This paper presents an experimental analysis of the clipart classification based on the style similarity with two well-known CNN-models (Inception Resnet V2 [13] and VGG-16 [14] and transfers learning with the same benchmark dataset (Microsoft Style Dataset 3.6K). From this experiment, we find out that the accuracy of Inception Resnet V2 is better than VGG for clipart style classification because of its deep nature and convolution map with various sizes in parallel. We also find out that the end-to-end training can improve the accuracy more than 20% in both CNN models.

Fashion leaders revisited - The viewpoint of college students as fashion followers - (패션리더에 대한 재고 - 팔로워로서의 대학생 관점 -)

  • Park, Kyungae
    • The Research Journal of the Costume Culture
    • /
    • v.26 no.5
    • /
    • pp.777-792
    • /
    • 2018
  • As social media has become a part of daily life, new types of online opinion leaders are emerging, and in turn, changes in traditional fashion leaders and leadership are expected. Considering such changes, this study attempted to reexamine fashion leader types and influence characteristics from the perspective of college students as fashion followers. Students were asked to write an essay identifying their fashion leader and how and why they were influenced by him or her. Sixty essays entitled "My Fashion Leader" were collected and content-analyzed. A total of 78 fashion leaders were identified and categorized into four types including celebrities, social media influencers, friends/family/acquaintances, and people seen on the street in order of frequency. Influence characteristics of the identified fashion leaders included superiority, role model, similarity, and familiarity. Similarity was observed across all types of fashion leaders, while superiority and familiarity were identified for celebrities and friends/family/acquaintances, respectively. The results imply that celebrities, mostly those from the TV, movie, and music industries, are still important as fashion leaders in society regardless of their communication style, while friends/family/acquaintances as opinion leaders within a consumer group are important to provide information, advice, and help. However, social media influencers between the two groups are expanding the influence.

Characterization of Binding Mode for Human Coagulation Factor XI (FXI) Inhibitors

  • Cho, Jae Eun;Kim, Jun Tae;Jung, Seo Hee;Kang, Nam Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1212-1220
    • /
    • 2013
  • The human coagulation factor XI (FXI) is a serine protease that plays a significant role in blocking of the blood coagulation cascade as an attractive antithrombotic target. Selective inhibition of FXIa (an activated form of factor XI) disrupts the intrinsic coagulation pathway without affecting the extrinsic pathway or other coagulation factors such as FXa, FIIa, FVIIa. Furthermore, targeting the FXIa might significantly reduce the bleeding side effects and improve the safety index. This paper reports on a docking-based three dimensional quantitative structure activity relationship (3D-QSAR) study of the potent FXIa inhibitors, the chloro-phenyl tetrazole scaffold series, using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods. Due to the characterization of FXIa binding site, we classified the alignment of the known FXIa inhibitors into two groups according to the docked pose: S1-S2-S4 and S1-S1'-S2'. Consequently, highly predictive 3D-QSAR models of our result will provide insight for designing new potent FXIa inhibitors.

3D Shape Descriptor with Interatomic Distance for Screening the Molecular Database (분자 데이터베이스 스크리닝을 위한 원자간 거리 기반의 3차원 형상 기술자)

  • Lee, Jae-Ho;Park, Joon-Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.404-414
    • /
    • 2009
  • In the computational molecular analysis, 3D structural comparison for protein searching plays a very important role. As protein databases have been grown rapidly in size, exhaustive search methods cannot provide satisfactory performance. Because exhaustive search methods try to handle the structure of protein by using sphere set which is converted from atoms set, the similarity calculation about two sphere sets is very expensive. Instead, the filter-and-refine paradigm offers an efficient alternative to database search without compromising the accuracy of the answers. In recent, a very fast algorithm based on the inter-atomic distance has been suggested by Ballester and Richard. Since they adopted the moments of distribution with inter-atomic distance between atoms which are rotational invariant, they can eliminate the structure alignment and orientation fix process and perform the searching faster than previous methods. In this paper, we propose a new 3D shape descriptor. It has properties of the general shape distribution and useful property in screening the molecular database. We show some experimental results for the validity of our method.

Efficient Recognition of Easily-confused Chinese Herbal Slices Images Using Enhanced ResNeSt

  • Qi Zhang;Jinfeng Ou;Huaying Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2103-2118
    • /
    • 2024
  • Chinese herbal slices (CHS) automated recognition based on computer vision plays a critical role in the practical application of intelligent Chinese medicine. Due to the complexity and similarity of herbal images, identifying Chinese herbal slices is still a challenging task. Especially, easily-confused CHS have higher inter-class and intra-class complexity and similarity issues, the existing deep learning models are less adaptable to identify them efficiently. To comprehensively address these problems, a novel tiny easily-confused CHS dataset has been built firstly, which includes six pairs of twelve categories with about 2395 samples. Furthermore, we propose a ResNeSt-CHS model that combines multilevel perception fusion (MPF) and perceptive sparse fusion (PSF) blocks for efficiently recognizing easilyconfused CHS images. To verify the superiority of the ResNeSt-CHS and the effectiveness of our dataset, experiments have been employed, validating that the ResNeSt-CHS is optimal for easily-confused CHS recognition, with 2.1% improvement of the original ResNeSt model. Additionally, the results indicate that ResNeSt-CHS is applied on a relatively small-scale dataset yet high accuracy. This model has obtained state-of-the-art easily-confused CHS classification performance, with accuracy of 90.8%, far beyond other models (EfficientNet, Transformer, and ResNeSt, etc) in terms of evaluation criteria.

In silico characterisation, homology modelling and structure-based functional annotation of blunt snout bream (Megalobrama amblycephala) Hsp70 and Hsc70 proteins

  • Tran, Ngoc Tuan;Jakovlic, Ivan;Wang, Wei-Min
    • Journal of Animal Science and Technology
    • /
    • v.57 no.12
    • /
    • pp.44.1-44.9
    • /
    • 2015
  • Background: Heat shock proteins play an important role in protection from stress stimuli and metabolic insults in almost all organisms. Methods: In this study, computational tools were used to deeply analyse the physicochemical characteristics and, using homology modelling, reliably predict the tertiary structure of the blunt snout bream (Ma-) Hsp70 and Hsc70 proteins. Derived three-dimensional models were then used to predict the function of the proteins. Results: Previously published predictions regarding the protein length, molecular weight, theoretical isoelectric point and total number of positive and negative residues were corroborated. Among the new findings are: the extinction coefficient (33725/33350 and 35090/34840 - Ma-Hsp70/ Ma-Hsc70, respectively), instability index (33.68/35.56 - both stable), aliphatic index (83.44/80.23 - both very stable), half-life estimates (both relatively stable), grand average of hydropathicity (-0.431/-0.473 - both hydrophilic) and amino acid composition (alanine-lysine-glycine/glycine-lysine-aspartic acid were the most abundant, no disulphide bonds, the N-terminal of both proteins was methionine). Homology modelling was performed by SWISS-MODEL program and the proposed model was evaluated as highly reliable based on PROCHECK's Ramachandran plot, ERRAT, PROVE, Verify 3D, ProQ and ProSA analyses. Conclusions: The research revealed a high structural similarity to Hsp70 and Hsc70 proteins from several taxonomically distant animal species, corroborating a remarkably high level of evolutionary conservation among the members of this protein family. Functional annotation based on structural similarity provides a reliable additional indirect evidence for a high level of functional conservation of these two genes/proteins in blunt snout bream, but it is not sensitive enough to functionally distinguish the two isoforms.

A Study on the Improvement of Automatic Text Recognition of Road Signs Using Location-based Similarity Verification (위치기반 유사도 검증을 이용한 도로표지 안내지명 자동인식 개선방안 연구)

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.241-250
    • /
    • 2019
  • Road signs are guide facilities for road users, and the Ministry of Land, Infrastructure and Transport has established and operated a system to enhance the convenience of managing these road signs. The role of road signs will decrease in the future autonomous driving, but they will continue to be needed. For the accurate mechanical recognition of texts on road signs, automatic road sign recognition equipment has been developed and it has applied image-based text recognition technology. Yet there are many cases of misrecognition due to irregular specifications and external environmental factors such as manual manufacturing, illumination, light reflection, and rainfall. The purpose of this study is to derive location-based destination names for finding misrecognition errors that cannot be overcome by image analysis, and to improve the automatic recognition of road signs destination names by using Levenshtein similarity verification method based on phoneme separation.