• Title/Summary/Keyword: Similarity Learning

Search Result 499, Processing Time 0.022 seconds

Similarity Analysis Between SAR Target Images Based on Siamese Network (Siamese 네트워크 기반 SAR 표적영상 간 유사도 분석)

  • Park, Ji-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.462-475
    • /
    • 2022
  • Different from the field of electro-optical(EO) image analysis, there has been less interest in similarity metrics between synthetic aperture radar(SAR) target images. A reliable and objective similarity analysis for SAR target images is expected to enable the verification of the SAR measurement process or provide the guidelines of target CAD modeling that can be used for simulating realistic SAR target images. For this purpose, this paper presents a similarity analysis method based on the siamese network that quantifies the subjective assessment through the distance learning of similar and dissimilar SAR target image pairs. The proposed method is applied to MSTAR SAR target images of slightly different depression angles and the resultant metrics are compared and analyzed with qualitative evaluation. Since the image similarity is somewhat related to recognition performance, the capacity of the proposed method for target recognition is further checked experimentally with the confusion matrix.

A deep learning model based on triplet losses for a similar child drawing selection algorithm (Triplet Loss 기반 딥러닝 모델을 통한 유사 아동 그림 선별 알고리즘)

  • Moon, Jiyu;Kim, Min-Jong;Lee, Seong-Oak;Yu, Yonggyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The goal of this paper is to create a deep learning model based on triplet loss for generating similar child drawing selection algorithms. To assess the similarity of children's drawings, the distance between feature vectors belonging to the same class should be close, and the distance between feature vectors belonging to different classes should be greater. Therefore, a similar child drawing selection algorithm was developed in this study by building a deep learning model combining Triplet Loss and residual network(ResNet), which has an advantage in measuring image similarity regardless of the number of classes. Finally, using this model's similar child drawing selection algorithm, the similarity between the target child drawing and the other drawings can be measured and drawings with a high similarity can be chosen.

Video Classification System Based on Similarity Representation Among Sequential Data (순차 데이터간의 유사도 표현에 의한 동영상 분류)

  • Lee, Hosuk;Yang, Jihoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • It is not easy to learn simple expressions of moving picture data since it contains noise and a lot of information in addition to time-based information. In this study, we propose a similarity representation method and a deep learning method between sequential data which can express such video data abstractly and simpler. This is to learn and obtain a function that allow them to have maximum information when interpreting the degree of similarity between image data vectors constituting a moving picture. Through the actual data, it is confirmed that the proposed method shows better classification performance than the existing moving image classification methods.

A Study on Big-5 based Personality Analysis through Analysis and Comparison of Machine Learning Algorithm (머신러닝 알고리즘 분석 및 비교를 통한 Big-5 기반 성격 분석 연구)

  • Kim, Yong-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.169-174
    • /
    • 2019
  • In this study, I use surveillance data collection and data mining, clustered by clustering method, and use supervised learning to judge similarity. I aim to use feature extraction algorithms and supervised learning to analyze the suitability of the correlations of personality. After conducting the questionnaire survey, the researchers refine the collected data based on the questionnaire, classify the data sets through the clustering techniques of WEKA, an open source data mining tool, and judge similarity using supervised learning. I then use feature extraction algorithms and supervised learning to determine the suitability of the results for personality. As a result, it was found that the highest degree of similarity classification was obtained by EM classification and supervised learning by Naïve Bayes. The results of feature classification and supervised learning were found to be useful for judging fitness. I found that the accuracy of each Big-5 personality was changed according to the addition and deletion of the items, and analyzed the differences for each personality.

Automated Segmentation of Left Ventricular Myocardium on Cardiac Computed Tomography Using Deep Learning

  • Hyun Jung Koo;June-Goo Lee;Ji Yeon Ko;Gaeun Lee;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.21 no.6
    • /
    • pp.660-669
    • /
    • 2020
  • Objective: To evaluate the accuracy of a deep learning-based automated segmentation of the left ventricle (LV) myocardium using cardiac CT. Materials and Methods: To develop a fully automated algorithm, 100 subjects with coronary artery disease were randomly selected as a development set (50 training / 20 validation / 30 internal test). An experienced cardiac radiologist generated the manual segmentation of the development set. The trained model was evaluated using 1000 validation set generated by an experienced technician. Visual assessment was performed to compare the manual and automatic segmentations. In a quantitative analysis, sensitivity and specificity were calculated according to the number of pixels where two three-dimensional masks of the manual and deep learning segmentations overlapped. Similarity indices, such as the Dice similarity coefficient (DSC), were used to evaluate the margin of each segmented masks. Results: The sensitivity and specificity of automated segmentation for each segment (1-16 segments) were high (85.5-100.0%). The DSC was 88.3 ± 6.2%. Among randomly selected 100 cases, all manual segmentation and deep learning masks for visual analysis were classified as very accurate to mostly accurate and there were no inaccurate cases (manual vs. deep learning: very accurate, 31 vs. 53; accurate, 64 vs. 39; mostly accurate, 15 vs. 8). The number of very accurate cases for deep learning masks was greater than that for manually segmented masks. Conclusion: We present deep learning-based automatic segmentation of the LV myocardium and the results are comparable to manual segmentation data with high sensitivity, specificity, and high similarity scores.

Deep Learning Similarity-based 1:1 Matching Method for Real Product Image and Drawing Image

  • Han, Gi-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.59-68
    • /
    • 2022
  • This paper presents a method for 1:1 verification by comparing the similarity between the given real product image and the drawing image. The proposed method combines two existing CNN-based deep learning models to construct a Siamese Network. After extracting the feature vector of the image through the FC (Fully Connected) Layer of each network and comparing the similarity, if the real product image and the drawing image (front view, left and right side view, top view, etc) are the same product, the similarity is set to 1 for learning and, if it is a different product, the similarity is set to 0. The test (inference) model is a deep learning model that queries the real product image and the drawing image in pairs to determine whether the pair is the same product or not. In the proposed model, through a comparison of the similarity between the real product image and the drawing image, if the similarity is greater than or equal to a threshold value (Threshold: 0.5), it is determined that the product is the same, and if it is less than or equal to, it is determined that the product is a different product. The proposed model showed an accuracy of about 71.8% for a query to a product (positive: positive) with the same drawing as the real product, and an accuracy of about 83.1% for a query to a different product (positive: negative). In the future, we plan to conduct a study to improve the matching accuracy between the real product image and the drawing image by combining the parameter optimization study with the proposed model and adding processes such as data purification.

Aircraft Motion Identification Using Sub-Aperture SAR Image Analysis and Deep Learning

  • Doyoung Lee;Duk-jin Kim;Hwisong Kim;Juyoung Song;Junwoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.167-177
    • /
    • 2024
  • With advancements in satellite technology, interest in target detection and identification is increasing quantitatively and qualitatively. Synthetic Aperture Radar(SAR) images, which can be acquired regardless of weather conditions, have been applied to various areas combined with machine learning based detection algorithms. However, conventional studies primarily focused on the detection of stationary targets. In this study, we proposed a method to identify moving targets using an algorithm that integrates sub-aperture SAR images and cosine similarity calculations. Utilizing a transformer-based deep learning target detection model, we extracted the bounding box of each target, designated the area as a region of interest (ROI), estimated the similarity between sub-aperture SAR images, and determined movement based on a predefined similarity threshold. Through the proposed algorithm, the quantitative evaluation of target identification capability enhanced its accuracy compared to when training with the targets with two different classes. It signified the effectiveness of our approach in maintaining accuracy while reliably discerning whether a target is in motion.

A Note on Ratio and Similarity in Elementary-Middle School Mathematics (초.중등학교 수학에서 다루는 비와 닮음에 대한 고찰)

  • Kim, Heung-Ki
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.1
    • /
    • pp.1-24
    • /
    • 2009
  • The applications of ratio and similarity have been in need of everyday life from ancient times. Euclid's elements Ⅴand Ⅵ cover ratio and similarity respectively. In this note, we have done a comparative analysis to button down the contents of ratio and similarity covered by the math text books used in Korea, Euclid's elements and the math text books used in Japan and America. As results, we can observe some differences between them. When math text books used in Korea introduce ratio, they presented it by showing examples unlike math text books used in America and Japan which present ratio by explaining the definition of it. In addition, in the text books used in Korea and Japan, the order of dealing with condition of similarity of triangles and the triangle proportionality is different from that of the text books used in America. Also, condition of similarity of triangles is used intuitively as postulate without any definition in text books used in Korea and Japan which is different from America's. The manner of teaching depending on the way of introducing learning contents and the order of presenting them can have great influence on student's understanding and application of the learning contents. For more desirable teaching in math it is better to provide text books dealing with various learning contents which consider student's diverse abilities rather than using current text books offering learning contents which are applied uniformly.

  • PDF

Noise-tolerant Image Restoration with Similarity-learned Fuzzy Association Memory

  • Park, Choong Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.51-55
    • /
    • 2020
  • In this paper, an improved FAM is proposed by adopting similarity learning in the existing FAM (Fuzzy Associative Memory) used in image restoration. Image restoration refers to the recovery of the latent clean image from its noise-corrupted version. In serious application like face recognition, this process should be noise-tolerant, robust, fast, and scalable. The existing FAM is a simple single layered neural network that can be applied to this domain with its robust fuzzy control but has low capacity problem in real world applications. That similarity measure is implied to the connection strength of the FAM structure to minimize the root mean square error between the recovered and the original image. The efficacy of the proposed algorithm is verified with significant low error magnitude from random noise in our experiment.

Integrating Spatial Proximity with Manifold Learning for Hyperspectral Data

  • Kim, Won-Kook;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.693-703
    • /
    • 2010
  • High spectral resolution of hyperspectral data enables analysis of complex natural phenomena that is reflected on the data nonlinearly. Although many manifold learning methods have been developed for such problems, most methods do not consider the spatial correlation between samples that is inherent and useful in remote sensing data. We propose a manifold learning method which directly combines the spatial proximity and the spectral similarity through kernel PCA framework. A gain factor caused by spatial proximity is first modelled with a heat kernel, and is added to the original similarity computed from the spectral values of a pair of samples. Parameters are tuned with intelligent grid search (IGS) method for the derived manifold coordinates to achieve optimal classification accuracies. Of particular interest is its performance with small training size, because labelled samples are usually scarce due to its high acquisition cost. The proposed spatial kernel PCA (KPCA) is compared with PCA in terms of classification accuracy with the nearest-neighbourhood classification method.