Synthetic dynamic infrared image generation from the given virtual environment is being the primary goal to simulate the output of the infra-red(IR) camera installed on a vehicle to evaluate the control algorithm for various search & reconnaissance missions. Due to the difficulty to obtain actual IR data in complex environments, Artificial intelligence(AI) has been used recently in the field of image data generation. In this paper, CycleGAN technique is applied to obtain a more realistic synthetic IR image. We added the Structural Similarity Index Measure(SSIM) loss function to the L1 loss function to generate a more realistic synthetic IR image when the CycleGAN image is generated. From the simulation, it is applicable to the guided-missile flight simulation tests by using the synthetic infrared image generated by the proposed technique.
Time series are comprehensively appeared and developed in many applications, ranging from science and technology to business and entertainrilent. Similarity search under time warping has attracted much interest between the time series in the large sequence databases. DTW (Dynamic Time Warping) is a robust distance measure and is superior to Euclidean distance for time series, allowing similarity matching although one of the sequences can elastic shift along the time axis. Nevertheless, it is more unfortunate that DTW has a quadratic time. Simultaneously the false dismissals are come forth since DTW distance does not satisfy the triangular inequality. In this paper, we propose an efficient range query algorithmbased on a new similarity search method under time warping. When our range query applies for this method, it can remove the significant non-qualify time series as early as possible before computing the accuracy DTW distance. Hence, it speeds up the calculation time and reduces the number of scanning the time series. Guaranteeing no false dismissals, the lower bounding function is advised that consistently underestimate the DTW distance and satisfy the triangular inequality. Through the experimental result, our range query algorithm outperforms the existing others.
동영상 데이터는 시간에 따른 정보는 물론이고, 많은 정보량과 함께 잡음도 포함하고 있기 때문에 이에 대한 간단한 표현을 학습하는 것은 쉽지 않다. 본 연구에서는 이와 같은 동영상 데이터를 추상적이면서 보다 간단하게 표현할 수 있는 순차 데이터간의 유사도 표현 방법과 딥러닝 학습방법을 제안한다. 이는 동영상을 구성하는 이미지 데이터 벡터들 사이의 유사도를 내적으로 표현할 때 그것들이 서로 최대한의 정보를 가질 수 있도록 하는 함수를 구하고 학습하는 것이다. 실제 데이터를 통하여 제안된 방법이 기존의 동영상 분류 방법들보다도 뛰어난 분류 성능을 보임을 확인하였다.
본 논문은 객체지향 C++ 클래스 컴포넌트를 분류하여 재사용자에게 필요한 컴포넌트를 제공하기 위한 저장소의 클래스 라이브러리 설계방법을 제안한 것이다. 클래스 라이브러리를 설계하기 위해서 컴포넌트 구성 모델을 정의하였고, Enumerative 분류 방법을 이용한 멀티미디어 영역을 분류하였으며, 문서 클러스터링 방법을 확장하여 유사도에 의한 C++ 클래스를 유사한 그룹으로 분류하는 클러스터 생성 기준을 제안하고 있다. 이 유사 그룹인 클러스터는 클래스 멤버 데이터와 멤버함수 그리고 클래스 유사도를 기반으로 분류되며, 분류된 컴포넌트들은 유사도 관계의 계층구조로 구성된다. 마지막으로 객체지향 개념인 Generalization/Specialization의 C++ 상속관계를 계층구조로 표현할 수 있는 클래스 라이브러리를 설계하였다.
Purpose - For the past several decades, behavioral economics or behavioral decision theory has undergone rapid development. This study provides a critical review of the development of behavioral economics with a focus on what are deemed to be core theories in the field. Starting from the utility function proposed by Daniel Bernoulli in the 18th century, the development history of utility functions until the emergence of the prospect theory is thoroughly reviewed. Some of the experimental results violating the traditionally assumed utility function and supporting the prospect theory value function are summarized. The most representative principles of rational choice are transitivity, independence from irrelevant alternatives (IIA), and regularity. The development of behavioral economics has been triggered by finding counter-examples to these principles. Some of the choice behaviors discussed in this study as counter-examples to the traditional theories of rational choice are the St. Petersburg paradox; the Allais paradox; gambling behavior; and the various context effects including the similarity effect, attraction effect, and the compromise effect. The Elimination-by-Aspects (EBA) model, which was proposed as an explanation for the similarity effect, is discussed in detail as well. Based on the literature review and further analysis, this study summarizes the relationship between the context effects, prospect theory, and EBA model. Research design, data, and methodology - This study provides an extensive literature review on several important theories in the field of behavioral decision theory and adds some critical comments to the theories and the relationships among them. This study first reviews the development of utility functions. Daniel Bernoulli introduced the concept of utility function to solve the St. Petersburg paradox. In the mid-20th century, Herbert Simon proposed the "satisficing" heuristic and presented a value function with a shape different from traditional utility functions. This study highlights the strengths and weaknesses of several utility functions proposed until the emergence of the prospect theory value function. Results - This study posits that prospect theory and EBA model are the two most important theories in the field of behavioral decision theory. They can explain various choice behaviors that traditional utility maximization analysis has been unable to. The application of these models to various fields is further increasing nowadays. This study explains how prospect theory and the EBA model can be used to explain the context effects. Conclusions - The traditional economic theory relies on a single variable called "utility" in explaining consumer choice. However, this study argues that, in investigating consumer choice, several other variables should also be considered. These are the similarity among alternatives, an alternative's prototypicality within the category, the dominance relationship between alternatives, and the reference point in evaluating alternatives. Due to the development of behavioral economics, we are now closer to a more complete understanding of consumer choice behavior than in the past when we had only a single tool called utility.
OSS(Open-Source Software)의 사용 증가와 함께 라이선스 위반, 취약한 소스코드 재사용 등에 의한 분쟁 및 피해가 빈번해지고 있다. 이에, 실행파일(바이너리) 수준에서 프로그램에 OSS 모듈이 포함되었는지 여부를 확인하는 기술이 필요해졌다. 본 논문에서는 바이너리에서 함수 수준의 특징정보를 사용하여 OSS 모듈을 탐지하는 기법을 제안한다. 기존 소프트웨어 특징정보(버스마크) 기반 도용 탐지 기법들은 프로그램 전체 간 유사성을 비교하기 때문에 프로그램의 일부로 포함된 OSS 모듈들을 탐지하는데 부적합하다. 본 논문에서는, 함수 수준의 실행명령어, 제어 흐름 그래프(Control Flow Graph)와 개선된 함수 수준 구조적 특징정보를 추출하고 유사성을 비교하여 OSS 모듈의 임의 사용 여부를 탐지한다. 제안기법의 효율성과 각 특징정보들의 OSS 탐지 성능을 평가하기 위해, 특징정보량, OSS 모듈 탐지 시간 및 정확도, 컴파일러 최적화에 대한 강인성을 실험하였다.
한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
/
pp.1177-1180
/
1993
In this paper, a fuzzy-neural interpolating network is proposed to efficiently approximate a nonlinear function. Specifically, basis functions are first constructed by Fuzzy Membership Function based Neural Networks (FMFNN). And the fuzzy similarity, which is defined as the degree of matching between actual output value and the output of each basis function, is employed to determine initial weighting of the proposed network. Then the weightings are updated in such a way that square of the error is minimized. To show the capability of function approximation of the proposed fuzzy-neural interpolating network, a numerical example is illustrated.
Let {X(t), $t{\geq}0$} be a stochastic integral process represented by stable random measure or multiple Ito-Wiener integrals. Under some conditions, we prove the continuity and self-similarity of these stochastic integral processes. As an application, we get Gaussian chaos which has some shift continuous function.
모양 기반 검색이란 실제 요소 값과 관계없이 질의 시퀀스와 유사한 모양을 갖는 시퀀스(서브시퀀스)를 데이터베이스 내에서 검색하여 내는 연산이다. 본 논문에서는 시계열 데이터베이스에서의 모양 기반 검색을 위한 유연성 있는 새로운 유사 모델을 정의하고, 이 유사 모델을 지원하기 위한 인덱싱 및 질의 처리 방안을 제시한다. 제안된 유사 모델에서는 정규화, 이동 평균, 타임 워핑 등 다양한 변환을 지원한다. 특히 최종 유사 정도를 계산하기 위하여 사용되는$L_p$거리 함수론 사용자가 임의로 지정하도록 함으로써 응용에서 선호하는 유사 모델을 반영할 수 있다. 또한 이러한 모양 기반 검색을 효과적으로 지원하기 위한 압축된 서브시퀀스 트리 구조를 제안하고, 이를 기반으로 하는 효율적인 질의 처리 기법을 제시한다. 실험 결과에 의하면 제안된 기법은 진의 시퀀스와 모양이 유사한 서브시퀀스들을 사용자에 의하여 선택된 거리 함수를 사용하여 성공적으로 검색할 뿐 아니라, 순차 검색과 비교하여 거리 함수 선택에 따라 수 십배에서 수 백배까지의 성능 개선 효과를 갖는 것으로 나타났다.
상대적 소속 함수(RMF)에 기반을 둔 새로운 유사성 측도를 제안한다. 본 논문에서는 RMF는 퍼지 부분 집합간의 상대성을 쉽게 나타내기 위해 제시되었다. 이러한 RMF의 형태는 매개변수값들에 따라 결정되기 때문에 매개변수 값들만을 조정해 줌으로써 퍼지 부분 집합간의 상대성을 쉽게 나타낼 수 있다. 그러므로 퍼지 부분 집합을 이용해 주관성을 표현할 때 개인이나 문화차이간의 상대성을 쉽게 반영해 줄수 있다. 이 경우이들 매개변수들은 퍼비 부분 집합의 구조를 결정해 주는 특징점들이라고 할수 있다. 결과적으로 퍼지 부분 집합간의 유사성 정도가 RMF의 매개변수들을 이용해서 빠르게 계산될 수 있다. RMF에 의해 퍼지 부분 집합간의 유사성 정도를 계산하기 위해 유클리디안 거리를 사용한다. 한편, 제안된 유사성 측도의 응용 분야로 새로운 언어 근사 방법을 제시하고 수치적인 예를 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.