• 제목/요약/키워드: Silver particle

검색결과 177건 처리시간 0.024초

Characterization and Stability of Silver Nanoparticles in Aqueous Solutions

  • Bac, L.H.;Gu, W.H.;Kim, J.C.;Kim, B.K.;Kim, J.S.
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.55-59
    • /
    • 2012
  • In this work, the silver nanoparticles have been synthesized by electrical explosion of wire in three liquid mediums: deionized water (DIW), polyvinylpyrrolidone (PVP) and sodium dodecyl benzene sulfonate (SDBS) solutions. Absorption in the UV-visible region of these suspensions was measured in the range of 300-800 nm. A surface plasmon peak was observed at ~400 nm in all suspensions in measured wavelength range. Particle size was analyzed by transmission electron microscope. It showed that the particles had nearly spherical shape in all samples. The average particle sizes prepared in DIW, PVP and SDBS solution were 37, 31 and 27 nm, respectively. Stability of the suspensions was estimated by multiple light scattering method. The presence of PVP and SDBS surfactants in the exploding medium resulted in enhanced stability of the silver suspensions.

액상환원법에 의한 저온 열처리용 Ag 나노분말의 합성 (Synthesis of Ag Nanopowder for Low Temperature Heat Treatment Prepared by Liquid Phase Reduction Method)

  • 이종국;최남규;송대성;양권승;서동석
    • 열처리공학회지
    • /
    • 제18권4호
    • /
    • pp.242-246
    • /
    • 2005
  • Silver nanoparticles were synthesized by liquid phase reduction method from aqueous silver nitrate solution and borohybride as a reduction agent. The morphology, particle size and shape were influenced by the reaction conditions such as the concentration of $AgNO_3$, a reduction agent and addition of surfactant. The particle size decreased with decreasing the concentration of silver nitrate and using a borohydride. The obtained Ag particles showed the spherical shape with the range of 10-20 nm.

기모공정에 따른 나노은입자함유 경편성물의 제품 특성에 관한 연구 (Effect of Raising Process of Warp-knitted Fabric Containing Silver Nano-particles)

  • 손은종;정성훈;황영구;정현미
    • 한국염색가공학회지
    • /
    • 제22권4호
    • /
    • pp.356-361
    • /
    • 2010
  • This study was aimed to investigate the antibacterial efficiency of silver nano-particles and the dyeing properties of a brushed warp-knitted fabric. The properties of the brushed warp-knitted fabric containing silver nano-particle by field production processes were evaluated by analyzing its silver contents, antibacterial activity, color difference, exhaustion curve, fastness and tearing strength. Bacterial reduction ratio amounts to 91.4 and 99.9 for Staphylococcus aureus and Klebsiella pneumoniae respectively. As the brushed pile length of its fabrics is longer, the exhaution rate of disperse dye becomes higher. The brushing process of its fabrics reduces the tearing strength. The results indicate that the brushed warp knitted fabric containing silver nano-particle can be a practically promising product.

이온성액체의 양이온이 은 입자 구조 형성에 미치는 영향 (Influence of Cation Part of Ionic Liquids on Silver Particle Structure)

  • 윤미희;유계상
    • 공업화학
    • /
    • 제27권5호
    • /
    • pp.551-554
    • /
    • 2016
  • 화학적 환원법에 이온성액체를 분산제로 사용하여 은 입자를 제조하였다. 이온성액체를 구성하는 양이온의 종류에 따라 제조된 은 입자는 다양한 구조를 가지는 것으로 관찰되었다. 이온성액체의 음이온에 상관없이 양이온의 알킬기의 길이가 길어질수록 은 입자가 작고 균일하게 형성되었다. 이는 이온성액체의 양이온이 길이에 따라 합성 중에 이온성액체들 간에 형성되는 구조체의 안정성에 차이를 보이기 때문이다. 조사된 7가지 이온성액체 중 [Omim][$PF_6$]가 은 입자 합성에 가장 효과적이었다.

Calculating the Threshold Energy of the Pulsed Laser Sintering of Silver and Copper Nanoparticles

  • Lee, Changmin;Hahn, Jae W.
    • Journal of the Optical Society of Korea
    • /
    • 제20권5호
    • /
    • pp.601-606
    • /
    • 2016
  • In this study, in order to analyze the low-temperature sintering process of silver and copper nanoparticles, we calculate their melting temperatures and surface melting temperatures with respect to particle size. For this calculation, we introduce the concept of mean-squared displacement of the atom proposed by Shi (1994). Using a parameter defined by the vibrational component of melting entropy, we readily obtained the surface and bulk melting temperatures of copper and silver nanoparticles. We also calculated the absorption cross-section of nanoparticles for variation in the wavelength of light. By using the calculated absorption cross-section of the nanoparticles at the melting temperature, we obtained the laser threshold energy for the sintering process with respect to particle size and wavelength of laser. We found that the absorption cross-section of silver nanoparticles has a resonant peak at a wavelength of close to 350 nm, yielding the lowest threshold energy. We calculated the intensity distribution around the nanoparticles using the finite-difference time-domain method and confirmed the resonant excitation of silver nanoparticles near the wavelength of the resonant peak.

직접 광대전의 대전특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Direct Photoelectric Charging)

  • 이창선;김용진;김상수
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.753-759
    • /
    • 2000
  • Photoelectric charging is a very efficient way of charging small particles. This method can be applied to combustion measurement, electrostatic precipitator, metal separation and control of micro-contamination. To understand the photoelectric charging mechanism, particle charging of silver by exposure to ultraviolet is investigated in this study. Average charges and charge distributions are measured at various conditions, using two differential mobility analyzers, a condensation nucleus counter, and an aerosol electrometer. The silver particles are generated in a spark discharge aerosol generator. After that process, the generated particles are charged in the photoelectric charger using low-pressure mercury lamp that emits ultraviolet having wavelength 253.7 nm. The results show that ultra-fine particles are highly charged by the photoelectric charging. The average charges linearly increase with increasing particle size and the charge distribution change with particle size. These results are discussed by comparison with previous experiments and proposed equations. It is assumed that the coefficient of electron emission probability is affected by initial charge. The results also show that the charge distribution of a particle is dependent on initial charge. Single changed particle, uncharged particle and neutralized particle are compared. The differences of charge distribution in each case increase with increasing particle size.

은 나노입자의 크기 및 형태가 자가조립 망상구조를 갖는 투명전도성 필름의 광학 및 전기 특성에 미치는 영향 (Effects of the Particle Size and Shape of Silver Nanoparticles on Optical and Electrical Characteristics of the Transparent Conductive Film with a Self-assembled Network Structure)

  • 신용우;김규병;노수진;소순영
    • 공업화학
    • /
    • 제29권2호
    • /
    • pp.162-167
    • /
    • 2018
  • 투명전도성필름(transparent conductive film, TCF) 제조를 위해 사용되는 은 나노입자의 평균입자 크기 및 형태가 폴리에틸렌 테리프탈레이트(polyethylene terephthalate, PET) 필름 위에 코팅된 은 전도성 라인의 광학 및 전기특성에 미치는 영향을 연구하였다. Ag-CM, Ag-ME 및 Ag-EE 방식으로 제조한 은 나노입자가 Ag-EB, Ag-CR 및 Ag-PL 방식으로 제조한 은 나노입자보다 투명도는 차이가 없으나 전도도에서 우수한 특성을 보였다. 이는 입자의 크기가 앞에 언급한 세 가지 경우 평균 입도가 약 80 nm 이하이고 입도의 균일도가 양호한 반면, 뒤에 언급한 세 가지 경우 평균입도가 100 nm 이상이며 입자의 뭉침 현상이 심하게 나타난 결과와 관련이 있음을 확인하였다. 이 결과는 PET 필름 위에 코팅을 하고 건조시켜 제조한 패턴을 각각의 시료별로 SEM으로 정면과 측면에서 관찰하였을 때, 패턴의 형상 및 두께의 균일도 측면에서 나타난 결과와 동일하였다. 따라서 은 나노입자의 평균입자 크기가 작고 입자의 균일성이 유지될수록 보다 우수한 전기 특성을 나타냄을 확인하였다.

Effects of Water Chemistry on Aggregation and Soil Adsorption of Silver Nanoparticles

  • Bae, Sujin;Hwang, Yu Sik;Lee, Yong-Ju;Lee, Sung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • 제28권
    • /
    • pp.6.1-6.7
    • /
    • 2013
  • Objectives In this study, we investigated the influence of ionic strength and natural organic matter (NOM) on aggregation and soil adsorption of citrate-coated silver nanoparticles (AgNPs). Methods Time-resolved dynamic light scattering measurements and batch adsorption experiments were used to study their aggregation and soil adsorption behaviors, respectively. Results The aggregation rate of AgNPs increased with increasing ionic strength and decreasing NOM concentration. At higher ionic strength, the AgNPs were unstable, and thus tended to be adsorbed to the soil, while increased NOM concentration hindered soil adsorption. To understand the varying behaviors of AgNPs depending on the environmental factors, particle zeta potentials were also measured as a function of ionic strength and NOM concentration. The magnitude of particle zeta potential became more negative with decreasing ionic strength and increasing NOM concentration. These results imply that the aggregation and soil adsorption behavior of AgNPs were mainly controlled by electrical double-layer repulsion consistent with the Derjaguin-Landau-Verwey-Overbeek theory. Conclusions This study found that the aggregation and soil adsorption behavior of AgNPs are closely associated with environmental factors such as ionic strength and NOM and suggested that assessing the environmental fate and transport of nanoparticles requires a thorough understanding of particle-particle interaction mechanisms.

Advantage of the Intensive Light Scattering by Plasmonic Nanoparticles in Velocimetry

  • Rong, Tengda;Li, Quanshui
    • Current Optics and Photonics
    • /
    • 제6권1호
    • /
    • pp.79-85
    • /
    • 2022
  • Tracers are one of the critical factors for improving the performance of velocimetry. Silver and gold nanoparticles as tracers with localized surface-plasmon resonance are analyzed for their scattering properties. The scattering cross sections, angular distribution of the scattering, and equivalent scattering cross sections from 53° and 1.5° half-angle cones at 532 nm are calculated, with particle sizes in the nanoscale range. The 53° and 1.5° half-angle cones used as examples correspond respectively to the collection cones for microscope objectives in microscopic measurements and camera lenses in macroscopic measurements. We find that there is a transitional size near 35 nm when comparing the equivalent scattering cross sections between silver and gold nanoparticles in water at 532 nm. The equivalent scattering cross section of silver nanoparticles is greater or smaller than that of gold nanoparticles when the particle radius is greater or smaller than 35 nm respectively. When the radius of the plasmonic nanoparticles is smaller than about 44 nm, their equivalent scattering cross sections are at least ten times that of TiO2 nanoparticles. Plasmonic nanoparticles are promising for velocimetry applications.

Preparation of Silver Nanocolloids Using Silver Alkylcarbamate Complex in Organic Medium with PVP Stabilizer

  • Park, Hyung-Seok;Park, Heon-Su;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2575-2580
    • /
    • 2010
  • We present a method for chemically reducing silver alkylcarbamate complex with hydrazine to synthesize silver nanocolloids in an organic solvent using polyvinylpyrrolidone (PVP) as the stabilizer. To determine the optimal conditions for preparing stable silver colloids of controlled size and shape, the silver 2-ethylhexylcarbamate (Ag-EHCB) complex, PVP, hydrazine, and 2-propanol solvent concentrations in the reaction mixture were varied. The initial colloid has a mean particle diameter of 5-80 nm, and it exhibits an absorption band with various shapes in the UV region with a maximum near 420 nm. UV-vis spectroscopy, TEM, and X-ray diffraction techniques were used to investigate the formation and growth process of the metallic silver nanocolloids.