DOI QR코드

DOI QR Code

Advantage of the Intensive Light Scattering by Plasmonic Nanoparticles in Velocimetry

  • Rong, Tengda (Department of Applied Physics, School of Mathematics and Physics, University of Science and Technology Beijing) ;
  • Li, Quanshui (Department of Applied Physics, School of Mathematics and Physics, University of Science and Technology Beijing)
  • Received : 2021.10.13
  • Accepted : 2022.01.02
  • Published : 2022.02.25

Abstract

Tracers are one of the critical factors for improving the performance of velocimetry. Silver and gold nanoparticles as tracers with localized surface-plasmon resonance are analyzed for their scattering properties. The scattering cross sections, angular distribution of the scattering, and equivalent scattering cross sections from 53° and 1.5° half-angle cones at 532 nm are calculated, with particle sizes in the nanoscale range. The 53° and 1.5° half-angle cones used as examples correspond respectively to the collection cones for microscope objectives in microscopic measurements and camera lenses in macroscopic measurements. We find that there is a transitional size near 35 nm when comparing the equivalent scattering cross sections between silver and gold nanoparticles in water at 532 nm. The equivalent scattering cross section of silver nanoparticles is greater or smaller than that of gold nanoparticles when the particle radius is greater or smaller than 35 nm respectively. When the radius of the plasmonic nanoparticles is smaller than about 44 nm, their equivalent scattering cross sections are at least ten times that of TiO2 nanoparticles. Plasmonic nanoparticles are promising for velocimetry applications.

Keywords

Acknowledgement

Q. Li received those fundings from his University and Ministry of Education of the People's Republic of China, respectively. T. Rong's contributions are idea, simulation, visualization and analysis. Q. Li's contributions are idea, methodology, and analysis.

References

  1. A. Melling, "Tracer particles and seeding for particle image velocimetry," Meas. Sci. Technol. 8, 1406-1416 (1997). https://doi.org/10.1088/0957-0233/8/12/005
  2. M. Braun, W. Schroder, and M. Klaas, "High-speed tomographic PIV measurements in a DISI engine," Exp. Fluids 60, 146 (2019). https://doi.org/10.1007/s00348-019-2792-4
  3. S. Pouya, M. Koochesfahani, P. Snee, M. Bawendi, and D. Nocera, "Single quantum dot (QD) imaging of fluid flow near surfaces," Exp. Fluids 39, 784-786 (2005). https://doi.org/10.1007/s00348-005-0004-x
  4. D. Malsch, M. Kielpinski, R. Merthan, J. Albert, G. Mayer, J. M. Kohler, H. Susse, M. Stahl, and T. Henkel, "μPIV-analysis of Taylor flow in micro channels," Chem. Eng. J. 135, S166-S172 (2008). https://doi.org/10.1016/j.cej.2007.07.065
  5. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Exp. Fluids 25, 316-319 (1998). https://doi.org/10.1007/s003480050235
  6. M. Shimura, S. Yoshida, K. Osawa, Y. Minamoto, T. Yokomori, K. Iwamoto, M. Tanahashi, and H. Kosaka, "Micro particle image velocimetry investigation of near-wall behaviors of tumble enhanced flow in an internal combustion engine," Int. J. Eng. Res. 20, 718-725 (2019). https://doi.org/10.1177/1468087418774710
  7. J. Westerweel, P. F. Geelhoed, and R. Lindken, "Single-pixel resolution ensemble correlation for micro-PIV applications," Exp. Fluids 37, 375-384 (2004). https://doi.org/10.1007/s00348-004-0826-y
  8. M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry, 2th ed. (Springer-Verlag, Germany. 2007).
  9. P. A. Walsh, V. M. Egan, and E. J. Walsh, "Novel micro-PIV study enables a greater understanding of nanoparticle suspension flows: nanofluids," Microfluid. Nanofluidics 8, 837-842 (2010). https://doi.org/10.1007/s10404-009-0553-z
  10. M. Mujat, R. D. Ferguson, N. Iftimia, D. X. Hammer, I. Nedyalkov, M. Wosnik, and H. Legner, "Optical coherence tomography-based micro-particle image velocimetry," Opt. Lett. 38, 4558-4561 (2013). https://doi.org/10.1364/OL.38.004558
  11. S. J. Williams, C. Park, and S. T. Wereley, "Advances and applications on microfluidic velocimetry techniques," Microfluid. Nanofluid. 8, 709-726 (2010). https://doi.org/10.1007/s10404-010-0588-1
  12. Z. Zhang, Q. Li, S. S. Haque, and M. Zhang, "Far-field plasmonic resonance enhanced nanoparticle image velocimetry within a microchannel," Rev. Sci. Inst. 82, 023117 (2011). https://doi.org/10.1063/1.3555341
  13. Y. Matsuura, A. Nakamura, and H. Kato, "Nanoparticle tracking velocimetry by observing light scattering from individual particles," Sens. Actuators B Chem. 256, 1078-1085 (2018). https://doi.org/10.1016/j.snb.2017.10.054
  14. Y. Matsuura, A. Nakamura, and H. Kato, "Determination of nanoparticle size using flow particle tracking method," Anal. Chem. 90, 4182-4187 (2018). https://doi.org/10.1021/acs.analchem.8b00249
  15. Y. X. Zhao, S. H. Yi, L. F. Tian, and Z. Y. Cheng, "Supersonic flow imaging via nanoparticles," Sci. China Technol. Sci. 39, 3640 (2009).
  16. T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, "Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement," J. Phys. Chem. Lett. 3, 191-202 (2012). https://doi.org/10.1021/jz201392k
  17. C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, "On the absorption cross section of CdSe nanocrystal quantum dots," J. Phys. Chem. B 106, 7619-7622 (2002). https://doi.org/10.1021/jp025698c
  18. P. Yu, M. C. Beard, R. J. Ellingson, S. Ferrere, C. Curtis, J. Drexler, F. Luiszer, and A. J. Nozik, "Absorption cross-section and related optical properties of colloidal InAs quantum dots," J. Phys. Chem. B 109, 7084-7087 (2005). https://doi.org/10.1021/jp046127i
  19. J. E. Abboud, X. Chong, M. Zhang, Z. Zhang, N. Jiang, S. Roy, and J. R. Gord, "Photothermally activated motion and ignition using aluminum nanoparticles," Appl. Phys. Lett. 102, 023905 (2013). https://doi.org/10.1063/1.4776660
  20. X. Zhang and Q. Li, "Forced damped harmonic oscillator model of the dipole mode of localized surface plasmon resonance," Plasmonics 16, 1525-1536 (2021). https://doi.org/10.1007/s11468-021-01408-7
  21. L. K. Sorensen, D. E. Khrennikov, V. S. Gerasimov, A. E. Ershov, M. A Vysotin, S. Monti, V I. Zakomirnyi, S. P. Polyutov, H.Agren, and S. V. Karpov, "Thermal degradation of optical resonances in plasmonic nanoparticles," Nanoscale 14, 433-447 (2022). https://doi.org/10.1039/D1NR06444D
  22. S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," J. Phys. Chem. B 103, 4212-4217 (1999). https://doi.org/10.1021/jp984796o
  23. T. P. Otanicar, B. T. Higgins, S. Brunter, P. E. Phelan, L. Dai, and R. Swaminathan, "Temperature dependent optical properties of nanoparticle suspensions," in Proc. ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels (Puerto Rico, USA, Jul. 2012).
  24. A. M. Olaizola, "Photothermal determination of absorption and scattering spectra of silver nanoparticles," Appl. Spectrosc. 72, 234-240 (2018). https://doi.org/10.1177/0003702817738056
  25. D. D. Evanoff and G. Chumanov, "Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections," J. Phys. Chem. B 108, 13957-13962 (2004). https://doi.org/10.1021/jp0475640
  26. Q. Li and Z. Zhang, "Broadband tunable and double dipole surface plasmon resonance by TiO2 Core/Ag shell nanoparticles," Plasmonics 6, 779-784 (2011). https://doi.org/10.1007/s11468-011-9264-x
  27. Y. Lyu, J. Ruan, M. Zhao, R. Hong, H. Lin, D. Zhang, and C. Tao, "Enhancement of photoluminescence by Ag localized surface plasmon resonance for ultraviolet detection," Curr. Opt. Photonics 5, 1-7 (2021). https://doi.org/10.3807/COPP.2021.5.1.001
  28. G. Seok, S. Choi, and Y. Kim, "Single-pixel autofocus with plasmonic nanostructures," Curr. Opt. Photonics 4, 428-433 (2020). https://doi.org/10.3807/COPP.2020.4.5.428
  29. A. Farmani, "Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range," J. Opt. Soc. America B 36, 401-407 (2019). https://doi.org/10.1364/JOSAB.36.000401
  30. A. Farmani and A. Mir, "Graphene sensor based on surface plasmon resonance for optical scanning," IEEE Photonics Technol. Lett. 31, 643-646 (2019). https://doi.org/10.1109/lpt.2019.2904618
  31. Y.-T. Chen, P.-H. Lee, P.-T. Shen, J. Launer, R. Oketani, K.-Y. Li, Y.-T. Huang, K. Masui, S. Shoji, K. Fujita, and S.-W. Chu, "Study of nonlinear plasmonic scattering in metallic nanoparticles," ACS Photonics 3, 1432-1439 (2016). https://doi.org/10.1021/acsphotonics.6b00025
  32. L. Polavarapu, Q. H. Xu, M. S. Dhoni, and W. Ji, "Optical limiting properties of silver nanoprisms," Appl. Phys. Lett. 92, 263110 (2008). https://doi.org/10.1063/1.2955530
  33. V. Liberman, M. Sworin, R. P. Kingsborough, G. P. Geurtsen, and M. Rothschild, "Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles," J. Appl. Phys. 113, 053107 (2013). https://doi.org/10.1063/1.4790798
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, USA. 1985).
  35. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370
  36. M. G. Olsen and R. J. Adrian, "Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry," Exp. Fluids 29, S166-S174 (2000). https://doi.org/10.1007/s003480070018